Multiplicative inverses of positive integer fractions
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-04-25.
module elementary-number-theory.multiplicative-inverses-positive-integer-fractions where
Imports
open import elementary-number-theory.greatest-common-divisor-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.positive-integer-fractions open import elementary-number-theory.reduced-integer-fractions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications
Idea
The integer fraction obtained by swapping the numerator and the denominator of a positive integer fraction is a multiplicative inverse of the original fraction up to the canonical similarity relation on integer fractions: its multiplication with the original fraction is similar to one.
Definitions
The inverse of a positive integer fraction
module _ (x : fraction-ℤ) (H : is-positive-fraction-ℤ x) where inv-is-positive-fraction-ℤ : fraction-ℤ pr1 inv-is-positive-fraction-ℤ = denominator-fraction-ℤ x pr1 (pr2 inv-is-positive-fraction-ℤ) = numerator-fraction-ℤ x pr2 (pr2 inv-is-positive-fraction-ℤ) = H
Properties
The inverse of a positive reduced integer fraction is reduced
module _ (x : fraction-ℤ) (P : is-positive-fraction-ℤ x) where is-reduced-inv-is-positive-fraction-ℤ : is-reduced-fraction-ℤ x → is-reduced-fraction-ℤ (inv-is-positive-fraction-ℤ x P) is-reduced-inv-is-positive-fraction-ℤ = inv-tr ( is-one-ℤ) ( is-commutative-gcd-ℤ ( denominator-fraction-ℤ x) ( numerator-fraction-ℤ x))
The multiplication of a positive integer fraction with its inverse is similar to one
module _ (x : fraction-ℤ) (P : is-positive-fraction-ℤ x) where left-inverse-law-mul-is-positive-fraction-ℤ : sim-fraction-ℤ (mul-fraction-ℤ (inv-is-positive-fraction-ℤ x P) x) (one-fraction-ℤ) left-inverse-law-mul-is-positive-fraction-ℤ = ( right-unit-law-mul-ℤ _) ∙ ( commutative-mul-ℤ ( denominator-fraction-ℤ x) ( numerator-fraction-ℤ x)) ∙ ( inv (left-unit-law-mul-ℤ _)) right-inverse-law-mul-is-positive-fraction-ℤ : sim-fraction-ℤ (mul-fraction-ℤ x (inv-is-positive-fraction-ℤ x P)) (one-fraction-ℤ) right-inverse-law-mul-is-positive-fraction-ℤ = ( right-unit-law-mul-ℤ _) ∙ ( commutative-mul-ℤ ( numerator-fraction-ℤ x) ( denominator-fraction-ℤ x)) ∙ ( inv (left-unit-law-mul-ℤ _))
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).