Approximations in located metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.approximations-located-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.full-subtypes open import foundation.propositions open import foundation.subtypes open import foundation.unions-subtypes open import foundation.universe-levels open import metric-spaces.approximations-metric-spaces open import metric-spaces.located-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
For an ε : ℚ⁺
, an
ε
-approximation¶
of a located metric space X
is an
ε
-approximation in the
corresponding metric space
Definition
module _ {l1 l2 l3 : Level} (X : Located-Metric-Space l1 l2) (ε : ℚ⁺) (S : subset-Located-Metric-Space l3 X) where is-approximation-prop-Located-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3) is-approximation-prop-Located-Metric-Space = is-approximation-prop-Metric-Space ( metric-space-Located-Metric-Space X) ( ε) ( S) is-approximation-Located-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) is-approximation-Located-Metric-Space = type-Prop is-approximation-prop-Located-Metric-Space approximation-Located-Metric-Space : {l1 l2 : Level} (l3 : Level) (X : Located-Metric-Space l1 l2) (ε : ℚ⁺) → UU (l1 ⊔ l2 ⊔ lsuc l3) approximation-Located-Metric-Space l3 X = approximation-Metric-Space l3 (metric-space-Located-Metric-Space X) module _ {l1 l2 l3 : Level} (X : Located-Metric-Space l1 l2) (ε : ℚ⁺) (S : approximation-Located-Metric-Space l3 X ε) where subset-approximation-Located-Metric-Space : subset-Located-Metric-Space l3 X subset-approximation-Located-Metric-Space = pr1 S type-approximation-Located-Metric-Space : UU (l1 ⊔ l3) type-approximation-Located-Metric-Space = type-subtype subset-approximation-Located-Metric-Space
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).