Functoriality of quotient groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-22.
Last modified on 2024-04-25.
{-# OPTIONS --lossy-unification #-} module group-theory.functoriality-quotient-groups where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.commuting-squares-of-group-homomorphisms open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.homomorphisms-groups-equipped-with-normal-subgroups open import group-theory.normal-subgroups open import group-theory.nullifying-group-homomorphisms open import group-theory.quotient-groups
Idea
Consider a normal subgroup N
of a
group G
and a normal subgroup M
of a group H
.
Then any group homomorphism f : G → H
satisfying the property that x ∈ N ⇒ f x ∈ M
induces a group homomorphism
g : G/N → H/M
, which is the unique group homomorphism such that the square
f
G -------> H
| |
q | | q
∨ ∨
G/N -----> H/M
g
Definitions
The quotient functor on groups
The functorial action of the quotient group construction
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (N : Normal-Subgroup l3 G) (M : Normal-Subgroup l4 H) (f : reflecting-hom-Group G H N M) where abstract unique-hom-quotient-Group : is-contr ( Σ ( hom-Group (quotient-Group G N) (quotient-Group H M)) ( coherence-square-hom-Group G H ( quotient-Group G N) ( quotient-Group H M) ( hom-reflecting-hom-Group G H N M f) ( quotient-hom-Group G N) ( quotient-hom-Group H M))) unique-hom-quotient-Group = unique-mapping-property-quotient-Group G N ( quotient-Group H M) ( comp-nullifying-hom-reflecting-hom-Group G H ( quotient-Group H M) ( N) ( M) ( nullifying-quotient-hom-Group H M) ( f)) abstract hom-quotient-Group : hom-Group (quotient-Group G N) (quotient-Group H M) hom-quotient-Group = pr1 (center unique-hom-quotient-Group) naturality-hom-quotient-Group : coherence-square-hom-Group G H ( quotient-Group G N) ( quotient-Group H M) ( hom-reflecting-hom-Group G H N M f) ( quotient-hom-Group G N) ( quotient-hom-Group H M) ( hom-quotient-Group) naturality-hom-quotient-Group = pr2 (center unique-hom-quotient-Group) map-hom-quotient-Group : type-quotient-Group G N → type-quotient-Group H M map-hom-quotient-Group = map-hom-Group (quotient-Group G N) (quotient-Group H M) hom-quotient-Group
The functorial action preserves the identity homomorphism
module _ {l1 l2 : Level} (G : Group l1) (N : Normal-Subgroup l2 G) where abstract preserves-id-hom-quotient-Group' : (p : reflects-normal-subgroup-hom-Group G G N N (id-hom-Group G)) → hom-quotient-Group G G N N (id-reflecting-hom-Group' G N p) = id-hom-Group (quotient-Group G N) preserves-id-hom-quotient-Group' p = ap ( pr1) ( eq-is-contr' ( unique-mapping-property-quotient-Group G N ( quotient-Group G N) ( nullifying-quotient-hom-Group G N)) ( hom-quotient-Group G G N N (id-reflecting-hom-Group' G N p) , naturality-hom-quotient-Group G G N N ( id-reflecting-hom-Group' G N p)) ( id-hom-Group (quotient-Group G N) , refl-htpy)) abstract preserves-id-hom-quotient-Group : hom-quotient-Group G G N N (id-reflecting-hom-Group G N) = id-hom-Group (quotient-Group G N) preserves-id-hom-quotient-Group = preserves-id-hom-quotient-Group' ( reflects-normal-subgroup-id-hom-Group G N)
The functorial action preserves composition
module _ {l1 l2 l3 l4 l5 l6 : Level} (G : Group l1) (H : Group l2) (K : Group l3) (L : Normal-Subgroup l4 G) (M : Normal-Subgroup l5 H) (N : Normal-Subgroup l6 K) where abstract preserves-comp-hom-quotient-Group' : (g : reflecting-hom-Group H K M N) (f : reflecting-hom-Group G H L M) (p : reflects-normal-subgroup-hom-Group G K L N ( hom-comp-reflecting-hom-Group G H K L M N g f)) → hom-quotient-Group G K L N ( comp-reflecting-hom-Group' G H K L M N g f p) = comp-hom-Group ( quotient-Group G L) ( quotient-Group H M) ( quotient-Group K N) ( hom-quotient-Group H K M N g) ( hom-quotient-Group G H L M f) preserves-comp-hom-quotient-Group' g f p = ap ( pr1) ( eq-is-contr' ( unique-mapping-property-quotient-Group G L ( quotient-Group K N) ( comp-nullifying-hom-reflecting-hom-Group G K ( quotient-Group K N) ( L) ( N) ( nullifying-quotient-hom-Group K N) ( comp-reflecting-hom-Group' G H K L M N g f p))) ( ( hom-quotient-Group G K L N ( comp-reflecting-hom-Group' G H K L M N g f p)) , ( naturality-hom-quotient-Group G K L N ( comp-reflecting-hom-Group' G H K L M N g f p))) ( comp-hom-Group ( quotient-Group G L) ( quotient-Group H M) ( quotient-Group K N) ( hom-quotient-Group H K M N g) ( hom-quotient-Group G H L M f) , ( pasting-horizontal-coherence-square-maps ( map-reflecting-hom-Group G H L M f) ( map-reflecting-hom-Group H K M N g) ( map-quotient-hom-Group G L) ( map-quotient-hom-Group H M) ( map-quotient-hom-Group K N) ( map-hom-quotient-Group G H L M f) ( map-hom-quotient-Group H K M N g) ( naturality-hom-quotient-Group G H L M f) ( naturality-hom-quotient-Group H K M N g)))) abstract preserves-comp-hom-quotient-Group : (g : reflecting-hom-Group H K M N) (f : reflecting-hom-Group G H L M) → hom-quotient-Group G K L N (comp-reflecting-hom-Group G H K L M N g f) = comp-hom-Group ( quotient-Group G L) ( quotient-Group H M) ( quotient-Group K N) ( hom-quotient-Group H K M N g) ( hom-quotient-Group G H L M f) preserves-comp-hom-quotient-Group g f = preserves-comp-hom-quotient-Group' g f ( reflects-normal-subgroup-comp-reflecting-hom-Group G H K L M N g f)
The quotient group functor
This functor remains to be formalized.
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).