Nilradical of a commutative ring
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Maša Žaucer and maybemabeline.
Created on 2022-10-04.
Last modified on 2024-04-11.
module commutative-algebra.nilradical-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.ideals-commutative-rings open import commutative-algebra.prime-ideals-commutative-rings open import commutative-algebra.radical-ideals-commutative-rings open import commutative-algebra.subsets-commutative-rings open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import ring-theory.nilpotent-elements-rings
Idea
The nilradical of a commutative ring is the ideal consisting of all nilpotent elements.
Definitions
subset-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → subset-Commutative-Ring l A subset-nilradical-Commutative-Ring A = is-nilpotent-element-ring-Prop (ring-Commutative-Ring A)
Properties
The nilradical contains zero
contains-zero-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → contains-zero-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) contains-zero-nilradical-Commutative-Ring A = intro-exists 1 refl
The nilradical is closed under addition
is-closed-under-addition-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-closed-under-addition-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-addition-nilradical-Commutative-Ring A {x} {y} = is-nilpotent-add-Ring ( ring-Commutative-Ring A) ( x) ( y) ( commutative-mul-Commutative-Ring A x y)
The nilradical is closed under negatives
is-closed-under-negatives-nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-closed-under-negatives-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-negatives-nilradical-Commutative-Ring A x = is-nilpotent-element-neg-Ring (ring-Commutative-Ring A) x
The nilradical is closed under multiplication with ring elements
module _ {l : Level} (A : Commutative-Ring l) where is-closed-under-right-multiplication-nilradical-Commutative-Ring : is-closed-under-right-multiplication-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-right-multiplication-nilradical-Commutative-Ring x y = is-nilpotent-element-mul-Ring ( ring-Commutative-Ring A) ( x) ( y) ( commutative-mul-Commutative-Ring A x y) is-closed-under-left-multiplication-nilradical-Commutative-Ring : is-closed-under-left-multiplication-subset-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) is-closed-under-left-multiplication-nilradical-Commutative-Ring x y = is-nilpotent-element-mul-Ring' ( ring-Commutative-Ring A) ( y) ( x) ( commutative-mul-Commutative-Ring A y x)
The nilradical ideal
nilradical-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → ideal-Commutative-Ring l A nilradical-Commutative-Ring A = ideal-right-ideal-Commutative-Ring A ( subset-nilradical-Commutative-Ring A) ( contains-zero-nilradical-Commutative-Ring A) ( is-closed-under-addition-nilradical-Commutative-Ring A) ( is-closed-under-negatives-nilradical-Commutative-Ring A) ( is-closed-under-right-multiplication-nilradical-Commutative-Ring A)
The nilradical is contained in every radical ideal
is-in-nilradical-Commutative-Ring : {l : Level} (R : Commutative-Ring l) → type-Commutative-Ring R → UU l is-in-nilradical-Commutative-Ring R = is-in-ideal-Commutative-Ring R (nilradical-Commutative-Ring R) is-contained-in-radical-ideal-nilradical-Commutative-Ring : {l : Level} (R : Commutative-Ring l) (I : radical-ideal-Commutative-Ring l R) (x : type-Commutative-Ring R) → is-in-nilradical-Commutative-Ring R x → is-in-radical-ideal-Commutative-Ring R I x is-contained-in-radical-ideal-nilradical-Commutative-Ring R I x p = apply-universal-property-trunc-Prop p ( subset-radical-ideal-Commutative-Ring R I x) ( λ (n , p) → is-radical-radical-ideal-Commutative-Ring R I x n (is-closed-under-eq-radical-ideal-Commutative-Ring' R I (contains-zero-radical-ideal-Commutative-Ring R I) p))
The nilradical is contained in every prime ideal
is-contained-in-prime-ideal-nilradical-Commutative-Ring : {l : Level} (R : Commutative-Ring l) (P : prime-ideal-Commutative-Ring l R) (x : type-Commutative-Ring R) → is-in-nilradical-Commutative-Ring R x → is-in-prime-ideal-Commutative-Ring R P x is-contained-in-prime-ideal-nilradical-Commutative-Ring R P x p = is-in-prime-ideal-is-in-radical-ideal-Commutative-Ring R P x ( is-contained-in-radical-ideal-nilradical-Commutative-Ring R ( radical-ideal-prime-ideal-Commutative-Ring R P) x p)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-08-21. maybemabeline and Fredrik Bakke. Refactor nilradical proof for prime ideals (#699).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).