Products of finite rings
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2024-02-07.
module finite-algebra.products-finite-rings where
Imports
open import finite-algebra.finite-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups open import ring-theory.products-rings open import ring-theory.rings open import univalent-combinatorics.cartesian-product-types open import univalent-combinatorics.finite-types
Idea
Given two finite rings R1 and R2, we define a ring structure on the product of R1 and R2.
Definition
module _ {l1 l2 : Level} (R1 : Ring-𝔽 l1) (R2 : Ring-𝔽 l2) where set-product-Ring-𝔽 : Set (l1 ⊔ l2) set-product-Ring-𝔽 = set-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) type-product-Ring-𝔽 : UU (l1 ⊔ l2) type-product-Ring-𝔽 = type-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) is-set-type-product-Ring-𝔽 : is-set type-product-Ring-𝔽 is-set-type-product-Ring-𝔽 = is-set-type-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) is-finite-type-product-Ring-𝔽 : is-finite type-product-Ring-𝔽 is-finite-type-product-Ring-𝔽 = is-finite-product (is-finite-type-Ring-𝔽 R1) (is-finite-type-Ring-𝔽 R2) finite-type-product-Ring-𝔽 : 𝔽 (l1 ⊔ l2) pr1 finite-type-product-Ring-𝔽 = type-product-Ring-𝔽 pr2 finite-type-product-Ring-𝔽 = is-finite-type-product-Ring-𝔽 add-product-Ring-𝔽 : type-product-Ring-𝔽 → type-product-Ring-𝔽 → type-product-Ring-𝔽 add-product-Ring-𝔽 = add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) zero-product-Ring-𝔽 : type-product-Ring-𝔽 zero-product-Ring-𝔽 = zero-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) neg-product-Ring-𝔽 : type-product-Ring-𝔽 → type-product-Ring-𝔽 neg-product-Ring-𝔽 = neg-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) left-unit-law-add-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (add-product-Ring-𝔽 zero-product-Ring-𝔽 x) x left-unit-law-add-product-Ring-𝔽 = left-unit-law-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) right-unit-law-add-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (add-product-Ring-𝔽 x zero-product-Ring-𝔽) x right-unit-law-add-product-Ring-𝔽 = right-unit-law-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) left-inverse-law-add-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (add-product-Ring-𝔽 (neg-product-Ring-𝔽 x) x) zero-product-Ring-𝔽 left-inverse-law-add-product-Ring-𝔽 = left-inverse-law-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) right-inverse-law-add-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (add-product-Ring-𝔽 x (neg-product-Ring-𝔽 x)) zero-product-Ring-𝔽 right-inverse-law-add-product-Ring-𝔽 = right-inverse-law-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) associative-add-product-Ring-𝔽 : (x y z : type-product-Ring-𝔽) → Id ( add-product-Ring-𝔽 (add-product-Ring-𝔽 x y) z) ( add-product-Ring-𝔽 x (add-product-Ring-𝔽 y z)) associative-add-product-Ring-𝔽 = associative-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) commutative-add-product-Ring-𝔽 : (x y : type-product-Ring-𝔽) → Id (add-product-Ring-𝔽 x y) (add-product-Ring-𝔽 y x) commutative-add-product-Ring-𝔽 = commutative-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) mul-product-Ring-𝔽 : type-product-Ring-𝔽 → type-product-Ring-𝔽 → type-product-Ring-𝔽 mul-product-Ring-𝔽 = mul-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) one-product-Ring-𝔽 : type-product-Ring-𝔽 one-product-Ring-𝔽 = one-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) associative-mul-product-Ring-𝔽 : (x y z : type-product-Ring-𝔽) → Id ( mul-product-Ring-𝔽 (mul-product-Ring-𝔽 x y) z) ( mul-product-Ring-𝔽 x (mul-product-Ring-𝔽 y z)) associative-mul-product-Ring-𝔽 = associative-mul-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) left-unit-law-mul-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (mul-product-Ring-𝔽 one-product-Ring-𝔽 x) x left-unit-law-mul-product-Ring-𝔽 = left-unit-law-mul-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) right-unit-law-mul-product-Ring-𝔽 : (x : type-product-Ring-𝔽) → Id (mul-product-Ring-𝔽 x one-product-Ring-𝔽) x right-unit-law-mul-product-Ring-𝔽 = right-unit-law-mul-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) left-distributive-mul-add-product-Ring-𝔽 : (x y z : type-product-Ring-𝔽) → Id ( mul-product-Ring-𝔽 x (add-product-Ring-𝔽 y z)) ( add-product-Ring-𝔽 (mul-product-Ring-𝔽 x y) (mul-product-Ring-𝔽 x z)) left-distributive-mul-add-product-Ring-𝔽 = left-distributive-mul-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) right-distributive-mul-add-product-Ring-𝔽 : (x y z : type-product-Ring-𝔽) → Id ( mul-product-Ring-𝔽 (add-product-Ring-𝔽 x y) z) ( add-product-Ring-𝔽 (mul-product-Ring-𝔽 x z) (mul-product-Ring-𝔽 y z)) right-distributive-mul-add-product-Ring-𝔽 = right-distributive-mul-add-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) semigroup-product-Ring-𝔽 : Semigroup (l1 ⊔ l2) semigroup-product-Ring-𝔽 = semigroup-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) group-product-Ring-𝔽 : Group (l1 ⊔ l2) group-product-Ring-𝔽 = group-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) ab-product-Ring-𝔽 : Ab (l1 ⊔ l2) ab-product-Ring-𝔽 = ab-product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) ring-product-Ring-𝔽 : Ring (l1 ⊔ l2) ring-product-Ring-𝔽 = product-Ring (ring-Ring-𝔽 R1) (ring-Ring-𝔽 R2) product-Ring-𝔽 : Ring-𝔽 (l1 ⊔ l2) product-Ring-𝔽 = finite-ring-is-finite-Ring ring-product-Ring-𝔽 is-finite-type-product-Ring-𝔽
Recent changes
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-25. Victor Blanchi and Egbert Rijke. Towards Hasse-Weil species (#631).