Automorphism groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Eléonore Mangel.
Created on 2022-04-13.
Last modified on 2024-01-31.
module group-theory.automorphism-groups where
Imports
open import foundation.0-connected-types open import foundation.1-types open import foundation.connected-components open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.equivalences-concrete-groups open import higher-group-theory.equivalences-higher-groups open import higher-group-theory.higher-groups open import structured-types.pointed-types
Idea
The automorphim group of a : A
is the group of
symmetries of a
in A
.
Definitions
Automorphism ∞-groups of a type
module _ {l : Level} (A : UU l) (a : A) where classifying-type-Automorphism-∞-Group : UU l classifying-type-Automorphism-∞-Group = connected-component A a shape-Automorphism-∞-Group : classifying-type-Automorphism-∞-Group pr1 shape-Automorphism-∞-Group = a pr2 shape-Automorphism-∞-Group = unit-trunc-Prop refl classifying-pointed-type-Automorphism-∞-Group : Pointed-Type l pr1 classifying-pointed-type-Automorphism-∞-Group = classifying-type-Automorphism-∞-Group pr2 classifying-pointed-type-Automorphism-∞-Group = shape-Automorphism-∞-Group is-0-connected-classifying-type-Automorphism-∞-Group : is-0-connected classifying-type-Automorphism-∞-Group is-0-connected-classifying-type-Automorphism-∞-Group = is-0-connected-connected-component A a Automorphism-∞-Group : ∞-Group l pr1 Automorphism-∞-Group = classifying-pointed-type-Automorphism-∞-Group pr2 Automorphism-∞-Group = is-0-connected-classifying-type-Automorphism-∞-Group
Automorphism groups of objects in a 1-type
module _ {l : Level} (A : 1-Type l) (a : type-1-Type A) where classifying-type-Automorphism-Group : UU l classifying-type-Automorphism-Group = classifying-type-Automorphism-∞-Group (type-1-Type A) a shape-Automorphism-Group : classifying-type-Automorphism-Group shape-Automorphism-Group = shape-Automorphism-∞-Group (type-1-Type A) a Automorphism-Group : Concrete-Group l pr1 Automorphism-Group = Automorphism-∞-Group (type-1-Type A) a pr2 Automorphism-Group = is-trunc-connected-component ( type-1-Type A) ( a) ( is-1-type-type-1-Type A) ( pair a (unit-trunc-Prop refl)) ( pair a (unit-trunc-Prop refl)) ∞-group-Automorphism-Group : ∞-Group l ∞-group-Automorphism-Group = ∞-group-Concrete-Group Automorphism-Group
Properties
Characerizing the identity type of Automorphism-∞-Group
module _ {l : Level} {A : UU l} (a : A) where Eq-classifying-type-Automorphism-∞-Group : (X Y : classifying-type-Automorphism-∞-Group A a) → UU l Eq-classifying-type-Automorphism-∞-Group X Y = pr1 X = pr1 Y refl-Eq-classifying-type-Automorphism-∞-Group : (X : classifying-type-Automorphism-∞-Group A a) → Eq-classifying-type-Automorphism-∞-Group X X refl-Eq-classifying-type-Automorphism-∞-Group X = refl is-torsorial-Eq-classifying-type-Automorphism-∞-Group : (X : classifying-type-Automorphism-∞-Group A a) → is-torsorial (Eq-classifying-type-Automorphism-∞-Group X) is-torsorial-Eq-classifying-type-Automorphism-∞-Group X = is-torsorial-Eq-subtype ( is-torsorial-Id (pr1 X)) ( λ a → is-prop-type-trunc-Prop) ( pr1 X) ( refl) ( pr2 X) Eq-eq-classifying-type-Automorphism-∞-Group : (X Y : classifying-type-Automorphism-∞-Group A a) → (X = Y) → Eq-classifying-type-Automorphism-∞-Group X Y Eq-eq-classifying-type-Automorphism-∞-Group X .X refl = refl-Eq-classifying-type-Automorphism-∞-Group X is-equiv-Eq-eq-classifying-type-Automorphism-∞-Group : (X Y : classifying-type-Automorphism-∞-Group A a) → is-equiv (Eq-eq-classifying-type-Automorphism-∞-Group X Y) is-equiv-Eq-eq-classifying-type-Automorphism-∞-Group X = fundamental-theorem-id ( is-torsorial-Eq-classifying-type-Automorphism-∞-Group X) ( Eq-eq-classifying-type-Automorphism-∞-Group X) extensionality-classifying-type-Automorphism-∞-Group : (X Y : classifying-type-Automorphism-∞-Group A a) → (X = Y) ≃ Eq-classifying-type-Automorphism-∞-Group X Y pr1 (extensionality-classifying-type-Automorphism-∞-Group X Y) = Eq-eq-classifying-type-Automorphism-∞-Group X Y pr2 (extensionality-classifying-type-Automorphism-∞-Group X Y) = is-equiv-Eq-eq-classifying-type-Automorphism-∞-Group X Y eq-Eq-classifying-type-Automorphism-∞-Group : (X Y : classifying-type-Automorphism-∞-Group A a) → Eq-classifying-type-Automorphism-∞-Group X Y → X = Y eq-Eq-classifying-type-Automorphism-∞-Group X Y = map-inv-equiv (extensionality-classifying-type-Automorphism-∞-Group X Y)
Characerizing the identity type of Automorphism-Group
module _ {l : Level} (A : 1-Type l) (a : type-1-Type A) where Eq-classifying-type-Automorphism-Group : (X Y : classifying-type-Automorphism-Group A a) → UU l Eq-classifying-type-Automorphism-Group = Eq-classifying-type-Automorphism-∞-Group a refl-Eq-classifying-type-Automorphism-Group : (X : classifying-type-Automorphism-Group A a) → Eq-classifying-type-Automorphism-Group X X refl-Eq-classifying-type-Automorphism-Group = refl-Eq-classifying-type-Automorphism-∞-Group a is-torsorial-Eq-classifying-type-Automorphism-Group : (X : classifying-type-Automorphism-Group A a) → is-torsorial (Eq-classifying-type-Automorphism-Group X) is-torsorial-Eq-classifying-type-Automorphism-Group = is-torsorial-Eq-classifying-type-Automorphism-∞-Group a Eq-eq-classifying-type-Automorphism-Group : (X Y : classifying-type-Automorphism-Group A a) → (X = Y) → Eq-classifying-type-Automorphism-Group X Y Eq-eq-classifying-type-Automorphism-Group X .X refl = refl-Eq-classifying-type-Automorphism-Group X is-equiv-Eq-eq-classifying-type-Automorphism-Group : (X Y : classifying-type-Automorphism-Group A a) → is-equiv (Eq-eq-classifying-type-Automorphism-Group X Y) is-equiv-Eq-eq-classifying-type-Automorphism-Group X = fundamental-theorem-id ( is-torsorial-Eq-classifying-type-Automorphism-Group X) ( Eq-eq-classifying-type-Automorphism-Group X) extensionality-classifying-type-Automorphism-Group : (X Y : classifying-type-Automorphism-Group A a) → (X = Y) ≃ Eq-classifying-type-Automorphism-Group X Y pr1 (extensionality-classifying-type-Automorphism-Group X Y) = Eq-eq-classifying-type-Automorphism-Group X Y pr2 (extensionality-classifying-type-Automorphism-Group X Y) = is-equiv-Eq-eq-classifying-type-Automorphism-Group X Y eq-Eq-classifying-type-Automorphism-Group : (X Y : classifying-type-Automorphism-Group A a) → Eq-classifying-type-Automorphism-Group X Y → X = Y eq-Eq-classifying-type-Automorphism-Group X Y = map-inv-equiv (extensionality-classifying-type-Automorphism-Group X Y)
Equal elements have equivalent automorphism ∞-groups
module _ {l : Level} {A : UU l} where equiv-eq-Automorphism-∞-Group : {x y : A} (p : x = y) → equiv-∞-Group (Automorphism-∞-Group A x) (Automorphism-∞-Group A y) equiv-eq-Automorphism-∞-Group refl = id-equiv-∞-Group (Automorphism-∞-Group A _)
Equal elements in a 1-type have isomorphic automorphism groups
module _ {l : Level} (A : 1-Type l) where equiv-eq-Automorphism-Group : {x y : type-1-Type A} (p : x = y) → equiv-Concrete-Group (Automorphism-Group A x) (Automorphism-Group A y) equiv-eq-Automorphism-Group refl = id-equiv-Concrete-Group (Automorphism-Group A _)
Recent changes
- 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-04-10. Egbert Rijke. Factoring out higher group theory (#559).