Central elements of monoids
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-03-18.
Last modified on 2023-11-24.
module group-theory.central-elements-monoids where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.central-elements-semigroups open import group-theory.monoids
Idea
An element x
of a monoid M
is said to be central if xy = yx
for every
y : M
.
Definition
module _ {l : Level} (M : Monoid l) where is-central-element-prop-Monoid : type-Monoid M → Prop l is-central-element-prop-Monoid = is-central-element-prop-Semigroup (semigroup-Monoid M) is-central-element-Monoid : type-Monoid M → UU l is-central-element-Monoid = is-central-element-Semigroup (semigroup-Monoid M) is-prop-is-central-element-Monoid : (x : type-Monoid M) → is-prop (is-central-element-Monoid x) is-prop-is-central-element-Monoid = is-prop-is-central-element-Semigroup (semigroup-Monoid M)
Properties
The unit element is central
module _ {l : Level} (M : Monoid l) where is-central-element-unit-Monoid : is-central-element-Monoid M (unit-Monoid M) is-central-element-unit-Monoid y = left-unit-law-mul-Monoid M y ∙ inv (right-unit-law-mul-Monoid M y)
The product of two central elements is central
module _ {l : Level} (M : Monoid l) where is-central-element-mul-Monoid : (x y : type-Monoid M) → is-central-element-Monoid M x → is-central-element-Monoid M y → is-central-element-Monoid M (mul-Monoid M x y) is-central-element-mul-Monoid = is-central-element-mul-Semigroup (semigroup-Monoid M)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).