Orientations of cubes

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2022-03-20.
Last modified on 2023-05-22.

module univalent-combinatorics.orientations-cubes where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.iterating-functions
open import foundation.universe-levels

open import univalent-combinatorics.cubes
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.function-types
open import univalent-combinatorics.standard-finite-types

Definition

orientation-cube : {k : }  cube k  UU (lzero)
orientation-cube {k} X =
  Σ ( vertex-cube k X  Fin 2)
    ( λ h 
      ( x y : vertex-cube k X) 
        Id
          ( iterate
            ( number-of-elements-is-finite
              ( is-finite-Σ
                ( is-finite-dim-cube k X)
                ( λ d 
                  is-finite-function-type
                    ( is-finite-eq
                      ( has-decidable-equality-is-finite
                        ( is-finite-axis-cube k X d))
                    { x d}
                    { y d})
                    ( is-finite-empty))))
            ( succ-Fin 2)
            ( h x))
          ( h y))

Recent changes