The ring extension of rational numbers of the ring of rational numbers
Content created by Garrett Figueroa and malarbol.
Created on 2025-08-11.
Last modified on 2025-08-11.
module elementary-number-theory.ring-extension-rational-numbers-of-rational-numbers where
Imports
open import elementary-number-theory.positive-integers open import elementary-number-theory.ring-of-integers open import elementary-number-theory.ring-of-rational-numbers open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import ring-theory.homomorphisms-ring-extensions-rational-numbers open import ring-theory.homomorphisms-rings open import ring-theory.localizations-rings open import ring-theory.ring-extensions-rational-numbers open import ring-theory.rings
Idea
The
ring of rational numbers
is a ring extension of ℚ
so
ℚ
is the initial ring extension of ℚ
: the type of
ring homomorphisms from ℚ
to a ring
extension of ℚ
is contractible.
As a corollary, ℚ
is the localization of
ℤ
at ℤ⁺
: any ring homomorphism ℤ → R
that inverts the positive integers
extends to a ring homomorphism ℚ → R
.
Definition
ℚ
is a rational extension of itself
is-rational-extension-ring-ℚ : is-rational-extension-Ring ring-ℚ is-rational-extension-ring-ℚ = is-rational-extension-has-rational-hom-Ring ( ring-ℚ) ( id-hom-Ring ring-ℚ) rational-extension-ring-ℚ : Rational-Extension-Ring lzero rational-extension-ring-ℚ = ( ring-ℚ , is-rational-extension-ring-ℚ)
Properties
The ring of rational numbers is the initial ring extension of ℚ
module _ {l : Level} where is-initial-rational-extension-ring-ℚ : (R : Rational-Extension-Ring l) → is-contr (hom-Rational-Extension-Ring rational-extension-ring-ℚ R) is-initial-rational-extension-ring-ℚ R = is-contr-rational-hom-Rational-Extension-Ring R
The ring of rational numbers is the localization of the ring of integers at ℤ⁺
module _ {l : Level} where universal-property-localization-positive-integers-ring-ℚ : universal-property-localization-subset-Ring ( l) ( ℤ-Ring) ( ring-ℚ) ( subtype-positive-ℤ) ( initial-hom-Ring ring-ℚ) ( is-rational-extension-ring-ℚ) universal-property-localization-positive-integers-ring-ℚ T = is-equiv-has-converse-is-prop ( is-prop-has-rational-hom-Ring T) ( is-prop-type-subtype ( inverts-subset-prop-hom-Ring ℤ-Ring T subtype-positive-ℤ) ( is-prop-is-contr (is-initial-ℤ-Ring T))) ( λ (f , H) → initial-hom-Rational-Extension-Ring ( ( T) , ( inv-tr ( inverts-subset-hom-Ring ℤ-Ring T subtype-positive-ℤ) ( contraction-initial-hom-Ring T f) ( H))))
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452).