The ring extension of rational numbers of the ring of rational numbers

Content created by Garrett Figueroa and malarbol.

Created on 2025-08-11.
Last modified on 2025-08-11.

module elementary-number-theory.ring-extension-rational-numbers-of-rational-numbers where
Imports
open import elementary-number-theory.positive-integers
open import elementary-number-theory.ring-of-integers
open import elementary-number-theory.ring-of-rational-numbers

open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.logical-equivalences
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import ring-theory.homomorphisms-ring-extensions-rational-numbers
open import ring-theory.homomorphisms-rings
open import ring-theory.localizations-rings
open import ring-theory.ring-extensions-rational-numbers
open import ring-theory.rings

Idea

The ring of rational numbers is a ring extension of so is the initial ring extension of : the type of ring homomorphisms from to a ring extension of is contractible.

As a corollary, is the localization of at ℤ⁺: any ring homomorphism ℤ → R that inverts the positive integers extends to a ring homomorphism ℚ → R.

Definition

is a rational extension of itself

is-rational-extension-ring-ℚ : is-rational-extension-Ring ring-ℚ
is-rational-extension-ring-ℚ =
  is-rational-extension-has-rational-hom-Ring
    ( ring-ℚ)
    ( id-hom-Ring ring-ℚ)

rational-extension-ring-ℚ : Rational-Extension-Ring lzero
rational-extension-ring-ℚ =
  ( ring-ℚ , is-rational-extension-ring-ℚ)

Properties

The ring of rational numbers is the initial ring extension of

module _
  {l : Level}
  where

  is-initial-rational-extension-ring-ℚ :
    (R : Rational-Extension-Ring l) 
    is-contr (hom-Rational-Extension-Ring rational-extension-ring-ℚ R)
  is-initial-rational-extension-ring-ℚ R =
    is-contr-rational-hom-Rational-Extension-Ring R

The ring of rational numbers is the localization of the ring of integers at ℤ⁺

module _
  {l : Level}
  where

  universal-property-localization-positive-integers-ring-ℚ :
    universal-property-localization-subset-Ring
      ( l)
      ( ℤ-Ring)
      ( ring-ℚ)
      ( subtype-positive-ℤ)
      ( initial-hom-Ring ring-ℚ)
      ( is-rational-extension-ring-ℚ)
  universal-property-localization-positive-integers-ring-ℚ T =
    is-equiv-has-converse-is-prop
      ( is-prop-has-rational-hom-Ring T)
      ( is-prop-type-subtype
        ( inverts-subset-prop-hom-Ring ℤ-Ring T subtype-positive-ℤ)
        ( is-prop-is-contr (is-initial-ℤ-Ring T)))
      ( λ (f , H) 
        initial-hom-Rational-Extension-Ring
          ( ( T) ,
            ( inv-tr
              ( inverts-subset-hom-Ring ℤ-Ring T subtype-positive-ℤ)
              ( contraction-initial-hom-Ring T f)
              ( H))))

Recent changes