Natural transformations between functors between large precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2023-10-18.
module category-theory.natural-transformations-functors-large-precategories where
Imports
open import category-theory.commuting-squares-of-morphisms-in-large-precategories open import category-theory.functors-large-precategories open import category-theory.large-precategories open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.universe-levels
Idea
Given large precategories C
and D
,
a natural transformation from a
functor F : C → D
to
G : C → D
consists of :
- a family of morphisms
γ : (x : C) → hom (F x) (G x)
such that the following identity holds: (G f) ∘ (γ x) = (γ y) ∘ (F f)
, for allf : hom x y
.
Definition
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} (C : Large-Precategory αC βC) (D : Large-Precategory αD βD) (F : functor-Large-Precategory γF C D) (G : functor-Large-Precategory γG C D) where family-of-morphisms-functor-Large-Precategory : UUω family-of-morphisms-functor-Large-Precategory = {l : Level} (X : obj-Large-Precategory C l) → hom-Large-Precategory D ( obj-functor-Large-Precategory F X) ( obj-functor-Large-Precategory G X) naturality-family-of-morphisms-functor-Large-Precategory : family-of-morphisms-functor-Large-Precategory → UUω naturality-family-of-morphisms-functor-Large-Precategory τ = {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} (f : hom-Large-Precategory C X Y) → coherence-square-hom-Large-Precategory D ( hom-functor-Large-Precategory F f) ( τ X) ( τ Y) ( hom-functor-Large-Precategory G f) record natural-transformation-Large-Precategory : UUω where constructor make-natural-transformation field hom-natural-transformation-Large-Precategory : family-of-morphisms-functor-Large-Precategory naturality-natural-transformation-Large-Precategory : naturality-family-of-morphisms-functor-Large-Precategory hom-natural-transformation-Large-Precategory open natural-transformation-Large-Precategory public
Properties
The identity natural transformation
Every functor comes equipped with an identity natural transformation.
module _ { αC αD γF : Level → Level} { βC βD : Level → Level → Level} ( C : Large-Precategory αC βC) ( D : Large-Precategory αD βD) ( F : functor-Large-Precategory γF C D) where hom-id-natural-transformation-Large-Precategory : family-of-morphisms-functor-Large-Precategory C D F F hom-id-natural-transformation-Large-Precategory X = id-hom-Large-Precategory D naturality-id-natural-transformation-Large-Precategory : naturality-family-of-morphisms-functor-Large-Precategory C D F F hom-id-natural-transformation-Large-Precategory naturality-id-natural-transformation-Large-Precategory f = ( right-unit-law-comp-hom-Large-Precategory D ( hom-functor-Large-Precategory F f)) ∙ ( inv ( left-unit-law-comp-hom-Large-Precategory D ( hom-functor-Large-Precategory F f))) id-natural-transformation-Large-Precategory : natural-transformation-Large-Precategory C D F F hom-natural-transformation-Large-Precategory id-natural-transformation-Large-Precategory = hom-id-natural-transformation-Large-Precategory naturality-natural-transformation-Large-Precategory id-natural-transformation-Large-Precategory = naturality-id-natural-transformation-Large-Precategory
Composition of natural transformations
module _ {αC αD γF γG γH : Level → Level} {βC βD : Level → Level → Level} (C : Large-Precategory αC βC) (D : Large-Precategory αD βD) (F : functor-Large-Precategory γF C D) (G : functor-Large-Precategory γG C D) (H : functor-Large-Precategory γH C D) (τ : natural-transformation-Large-Precategory C D G H) (σ : natural-transformation-Large-Precategory C D F G) where hom-comp-natural-transformation-Large-Precategory : family-of-morphisms-functor-Large-Precategory C D F H hom-comp-natural-transformation-Large-Precategory X = comp-hom-Large-Precategory D ( hom-natural-transformation-Large-Precategory τ X) ( hom-natural-transformation-Large-Precategory σ X) naturality-comp-natural-transformation-Large-Precategory : naturality-family-of-morphisms-functor-Large-Precategory C D F H hom-comp-natural-transformation-Large-Precategory naturality-comp-natural-transformation-Large-Precategory {X = X} {Y} f = inv ( associative-comp-hom-Large-Precategory D ( hom-functor-Large-Precategory H f) ( hom-natural-transformation-Large-Precategory τ X) ( hom-natural-transformation-Large-Precategory σ X)) ∙ ( ap ( comp-hom-Large-Precategory' D ( hom-natural-transformation-Large-Precategory σ X)) ( naturality-natural-transformation-Large-Precategory τ f)) ∙ ( associative-comp-hom-Large-Precategory D ( hom-natural-transformation-Large-Precategory τ Y) ( hom-functor-Large-Precategory G f) ( hom-natural-transformation-Large-Precategory σ X)) ∙ ( ap ( comp-hom-Large-Precategory D ( hom-natural-transformation-Large-Precategory τ Y)) ( naturality-natural-transformation-Large-Precategory σ f)) ∙ ( inv (associative-comp-hom-Large-Precategory D ( hom-natural-transformation-Large-Precategory τ Y) ( hom-natural-transformation-Large-Precategory σ Y) ( hom-functor-Large-Precategory F f))) comp-natural-transformation-Large-Precategory : natural-transformation-Large-Precategory C D F H hom-natural-transformation-Large-Precategory comp-natural-transformation-Large-Precategory = hom-comp-natural-transformation-Large-Precategory naturality-natural-transformation-Large-Precategory comp-natural-transformation-Large-Precategory = naturality-comp-natural-transformation-Large-Precategory
See also
Recent changes
- 2023-10-18. Egbert Rijke. reversing naturality (#856).
- 2023-10-17. Egbert Rijke and Fredrik Bakke. Adjunctions of large categories and some minor refactoring (#854).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).