Pointed endofunctors on categories
Content created by Egbert Rijke.
Created on 2024-02-08.
Last modified on 2024-02-08.
module category-theory.pointed-endofunctors-categories where
Imports
open import category-theory.categories open import category-theory.functors-categories open import category-theory.natural-transformations-functors-categories open import category-theory.pointed-endofunctors-precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels
Idea
An endofunctor F : C → C
on a
category C
is said to be
pointed¶
if it comes equipped with a
natural transformation
id ⇒ F
from the identity functor to
F
.
More explicitly, a
pointing¶
of an endofunctor F : C → C
consists of a family of morphisms η X : X → F X
such that for each morphism f : X → Y
in C
the diagram
η X
X -----> F X
| |
f | | F f
∨ ∨
Y -----> F Y
η Y
Definitions
The structure of a pointing on an endofunctor on a category
module _ {l1 l2 : Level} (C : Category l1 l2) (T : functor-Category C C) where pointing-endofunctor-Category : UU (l1 ⊔ l2) pointing-endofunctor-Category = pointing-endofunctor-Precategory (precategory-Category C) T
Pointed endofunctors on a category
module _ {l1 l2 : Level} (C : Category l1 l2) where pointed-endofunctor-Category : UU (l1 ⊔ l2) pointed-endofunctor-Category = pointed-endofunctor-Precategory (precategory-Category C) module _ (F : pointed-endofunctor-Category) where functor-pointed-endofunctor-Category : functor-Category C C functor-pointed-endofunctor-Category = functor-pointed-endofunctor-Precategory (precategory-Category C) F obj-pointed-endofunctor-Category : obj-Category C → obj-Category C obj-pointed-endofunctor-Category = obj-pointed-endofunctor-Precategory (precategory-Category C) F hom-pointed-endofunctor-Category : {X Y : obj-Category C} → hom-Category C X Y → hom-Category C ( obj-pointed-endofunctor-Category X) ( obj-pointed-endofunctor-Category Y) hom-pointed-endofunctor-Category = hom-pointed-endofunctor-Precategory (precategory-Category C) F preserves-id-pointed-endofunctor-Category : (X : obj-Category C) → hom-pointed-endofunctor-Category (id-hom-Category C {X}) = id-hom-Category C preserves-id-pointed-endofunctor-Category = preserves-id-pointed-endofunctor-Precategory (precategory-Category C) F preserves-comp-pointed-endofunctor-Category : {X Y Z : obj-Category C} (g : hom-Category C Y Z) (f : hom-Category C X Y) → hom-pointed-endofunctor-Category ( comp-hom-Category C g f) = comp-hom-Category C ( hom-pointed-endofunctor-Category g) ( hom-pointed-endofunctor-Category f) preserves-comp-pointed-endofunctor-Category = preserves-comp-pointed-endofunctor-Precategory (precategory-Category C) F pointing-pointed-endofunctor-Category : natural-transformation-Category C C ( id-functor-Category C) ( functor-pointed-endofunctor-Category) pointing-pointed-endofunctor-Category = pointing-pointed-endofunctor-Precategory (precategory-Category C) F hom-family-pointing-pointed-endofunctor-Category : hom-family-functor-Category C C ( id-functor-Category C) ( functor-pointed-endofunctor-Category) hom-family-pointing-pointed-endofunctor-Category = hom-family-pointing-pointed-endofunctor-Precategory ( precategory-Category C) ( F) naturality-pointing-pointed-endofunctor-Category : is-natural-transformation-Category C C ( id-functor-Category C) ( functor-pointed-endofunctor-Category) ( hom-family-pointing-pointed-endofunctor-Category) naturality-pointing-pointed-endofunctor-Category = naturality-pointing-pointed-endofunctor-Precategory ( precategory-Category C) F
Recent changes
- 2024-02-08. Egbert Rijke. Refactor the definition of monads (#1019).