Quicksort for lists
Content created by Egbert Rijke, Fredrik Bakke and Victor Blanchi.
Created on 2023-05-03.
Last modified on 2023-05-13.
module lists.quicksort-lists where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strong-induction-natural-numbers open import foundation.coproduct-types open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import lists.concatenation-lists open import lists.lists open import order-theory.decidable-total-orders
Idea
Quicksort is a sorting algorithm on lists that works by selecting a pivoting element, dividing the list into elements smaller than the pivoting element and elements greater than the pivoting element, and sorting those two lists by again applying the quicksort algorithm.
Definition
module _ {l1 l2 : Level} (X : Decidable-Total-Order l1 l2) where helper-quicksort-list-divide-leq : (x : type-Decidable-Total-Order X) → (y : type-Decidable-Total-Order X) → leq-or-strict-greater-Decidable-Poset X x y → list (type-Decidable-Total-Order X) → list (type-Decidable-Total-Order X) helper-quicksort-list-divide-leq x y (inl p) l = l helper-quicksort-list-divide-leq x y (inr p) l = cons y l quicksort-list-divide-leq : type-Decidable-Total-Order X → list (type-Decidable-Total-Order X) → list (type-Decidable-Total-Order X) quicksort-list-divide-leq x nil = nil quicksort-list-divide-leq x (cons y l) = helper-quicksort-list-divide-leq ( x) ( y) ( is-leq-or-strict-greater-Decidable-Total-Order X x y) ( quicksort-list-divide-leq x l) helper-quicksort-list-divide-strict-greater : (x : type-Decidable-Total-Order X) → (y : type-Decidable-Total-Order X) → leq-or-strict-greater-Decidable-Poset X x y → list (type-Decidable-Total-Order X) → list (type-Decidable-Total-Order X) helper-quicksort-list-divide-strict-greater x y (inl p) l = cons y l helper-quicksort-list-divide-strict-greater x y (inr p) l = l quicksort-list-divide-strict-greater : type-Decidable-Total-Order X → list (type-Decidable-Total-Order X) → list (type-Decidable-Total-Order X) quicksort-list-divide-strict-greater x nil = nil quicksort-list-divide-strict-greater x (cons y l) = helper-quicksort-list-divide-strict-greater ( x) ( y) ( is-leq-or-strict-greater-Decidable-Total-Order X x y) ( quicksort-list-divide-strict-greater x l) private helper-inequality-length-quicksort-list-divide-leq : (x : type-Decidable-Total-Order X) → (y : type-Decidable-Total-Order X) → (p : leq-or-strict-greater-Decidable-Poset X x y) → (l : list (type-Decidable-Total-Order X)) → length-list (helper-quicksort-list-divide-leq x y p l) ≤-ℕ length-list (cons y l) helper-inequality-length-quicksort-list-divide-leq x y (inl _) l = succ-leq-ℕ (length-list l) helper-inequality-length-quicksort-list-divide-leq x y (inr _) l = refl-leq-ℕ (length-list (cons y l)) inequality-length-quicksort-list-divide-leq : (x : type-Decidable-Total-Order X) → (l : list (type-Decidable-Total-Order X)) → length-list (quicksort-list-divide-leq x l) ≤-ℕ length-list l inequality-length-quicksort-list-divide-leq x nil = star inequality-length-quicksort-list-divide-leq x (cons y l) = transitive-leq-ℕ ( length-list (quicksort-list-divide-leq x (cons y l))) ( length-list (cons y (quicksort-list-divide-leq x l))) ( length-list (cons y l)) ( inequality-length-quicksort-list-divide-leq x l) ( helper-inequality-length-quicksort-list-divide-leq ( x) ( y) ( is-leq-or-strict-greater-Decidable-Total-Order X x y) ( quicksort-list-divide-leq x l)) helper-inequality-length-quicksort-list-divide-strict-greater : (x : type-Decidable-Total-Order X) → (y : type-Decidable-Total-Order X) → (p : leq-or-strict-greater-Decidable-Poset X x y) → (l : list (type-Decidable-Total-Order X)) → length-list (helper-quicksort-list-divide-strict-greater x y p l) ≤-ℕ length-list (cons y l) helper-inequality-length-quicksort-list-divide-strict-greater ( x) ( y) ( inl _) ( l) = refl-leq-ℕ (length-list (cons y l)) helper-inequality-length-quicksort-list-divide-strict-greater ( x) ( y) ( inr _) ( l) = succ-leq-ℕ (length-list l) inequality-length-quicksort-list-divide-strict-greater : (x : type-Decidable-Total-Order X) → (l : list (type-Decidable-Total-Order X)) → length-list (quicksort-list-divide-strict-greater x l) ≤-ℕ length-list l inequality-length-quicksort-list-divide-strict-greater x nil = star inequality-length-quicksort-list-divide-strict-greater x (cons y l) = transitive-leq-ℕ ( length-list (quicksort-list-divide-strict-greater x (cons y l))) ( length-list (cons y (quicksort-list-divide-strict-greater x l))) ( length-list (cons y l)) ( inequality-length-quicksort-list-divide-strict-greater x l) ( helper-inequality-length-quicksort-list-divide-strict-greater ( x) ( y) ( is-leq-or-strict-greater-Decidable-Total-Order X x y) ( quicksort-list-divide-strict-greater x l)) base-quicksort-list : (l : list (type-Decidable-Total-Order X)) → zero-ℕ = length-list l → list (type-Decidable-Total-Order X) base-quicksort-list nil x = nil inductive-step-quicksort-list : (k : ℕ) → □-≤-ℕ ( λ n → (l : list (type-Decidable-Total-Order X)) → n = length-list l → list (type-Decidable-Total-Order X)) ( k) → (l : list (type-Decidable-Total-Order X)) → succ-ℕ k = length-list l → list (type-Decidable-Total-Order X) inductive-step-quicksort-list k sort (cons x l) p = concat-list ( sort ( length-list (quicksort-list-divide-leq x l)) ( transitive-leq-ℕ ( length-list (quicksort-list-divide-leq x l)) ( length-list l) ( k) ( leq-eq-ℕ (length-list l) k (is-injective-succ-ℕ (inv p))) ( inequality-length-quicksort-list-divide-leq x l)) ( quicksort-list-divide-leq x l) ( refl)) ( cons ( x) ( sort ( length-list (quicksort-list-divide-strict-greater x l)) ( transitive-leq-ℕ ( length-list (quicksort-list-divide-strict-greater x l)) ( length-list l) ( k) ( leq-eq-ℕ (length-list l) k (is-injective-succ-ℕ (inv p))) ( inequality-length-quicksort-list-divide-strict-greater x l)) ( quicksort-list-divide-strict-greater x l) ( refl))) quicksort-list : list (type-Decidable-Total-Order X) → list (type-Decidable-Total-Order X) quicksort-list l = strong-ind-ℕ ( λ n → (l : list (type-Decidable-Total-Order X)) → n = length-list l → list (type-Decidable-Total-Order X)) ( base-quicksort-list) ( inductive-step-quicksort-list) ( length-list l) ( l) ( refl)
Recent changes
- 2023-05-13. Fredrik Bakke. Remove unused imports and fix some unaddressed comments (#621).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 2 (#592).
- 2023-05-05. Egbert Rijke. cleaning up order theory (#591).
- 2023-05-03. Victor Blanchi. Sorting algorithms (#572).