Subalgebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-14.
Last modified on 2026-02-14.
module commutative-algebra.subalgebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.commutative-rings open import commutative-algebra.subsets-algebras-commutative-rings open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.bilinear-maps-left-modules-commutative-rings open import linear-algebra.left-modules-commutative-rings open import linear-algebra.left-submodules-commutative-rings open import linear-algebra.linear-maps-left-modules-commutative-rings
Idea
A subset of an algebra over a commutative ring is a subalgebra¶ if it contains zero and is closed under addition, scalar multiplication, and multiplication, in which case it is itself an algebra.
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) (S : subset-algebra-Commutative-Ring l3 R A) where is-subalgebra-prop-subset-algebra-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-subalgebra-prop-subset-algebra-Commutative-Ring = ( contains-zero-prop-subset-algebra-Commutative-Ring R A S) ∧ ( is-closed-under-addition-prop-subset-algebra-Commutative-Ring R A S) ∧ ( is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring ( R) ( A) ( S)) ∧ ( is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring R A S) is-subalgebra-subset-algebra-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) is-subalgebra-subset-algebra-Commutative-Ring = type-Prop is-subalgebra-prop-subset-algebra-Commutative-Ring subalgebra-Commutative-Ring : {l1 l2 : Level} (l3 : Level) → (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) → UU (l1 ⊔ l2 ⊔ lsuc l3) subalgebra-Commutative-Ring l3 R A = type-subtype ( is-subalgebra-prop-subset-algebra-Commutative-Ring {l3 = l3} R A) module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) (S@(subtype-S , 0∈S , closed-addition-S , closed-scalar-S , closed-mul-S) : subalgebra-Commutative-Ring l3 R A) where left-module-subalgebra-Commutative-Ring : left-module-Commutative-Ring (l2 ⊔ l3) R left-module-subalgebra-Commutative-Ring = left-module-left-submodule-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) ( subtype-S , 0∈S , closed-addition-S , closed-scalar-S) type-subalgebra-Commutative-Ring : UU (l2 ⊔ l3) type-subalgebra-Commutative-Ring = type-subtype subtype-S mul-subalgebra-Commutative-Ring : type-subalgebra-Commutative-Ring → type-subalgebra-Commutative-Ring → type-subalgebra-Commutative-Ring mul-subalgebra-Commutative-Ring (x , x∈S) (y , y∈S) = ( mul-algebra-Commutative-Ring R A x y , closed-mul-S x y x∈S y∈S) abstract is-additive-left-mul-subalgebra-Commutative-Ring : (x : type-subalgebra-Commutative-Ring) → is-additive-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( mul-subalgebra-Commutative-Ring x) is-additive-left-mul-subalgebra-Commutative-Ring (x , x∈S) (y , y∈S) (z , z∈S) = eq-type-subtype ( subtype-S) ( left-distributive-mul-add-algebra-Commutative-Ring R A x y z) is-homogeneous-left-mul-subalgebra-Commutative-Ring : (x : type-subalgebra-Commutative-Ring) → is-homogeneous-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( mul-subalgebra-Commutative-Ring x) is-homogeneous-left-mul-subalgebra-Commutative-Ring (x , x∈S) c (y , y∈S) = eq-type-subtype ( subtype-S) ( inv (left-swap-scalar-mul-mul-algebra-Commutative-Ring R A c x y)) is-additive-right-mul-subalgebra-Commutative-Ring : (y : type-subalgebra-Commutative-Ring) → is-additive-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( λ x → mul-subalgebra-Commutative-Ring x y) is-additive-right-mul-subalgebra-Commutative-Ring (y , y∈S) (x , x∈S) (z , z∈S) = eq-type-subtype ( subtype-S) ( right-distributive-mul-add-algebra-Commutative-Ring R A x z y) is-homogeneous-right-mul-subalgebra-Commutative-Ring : (y : type-subalgebra-Commutative-Ring) → is-homogeneous-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( λ x → mul-subalgebra-Commutative-Ring x y) is-homogeneous-right-mul-subalgebra-Commutative-Ring (y , y∈S) c (x , x∈S) = eq-type-subtype ( subtype-S) ( associative-scalar-mul-mul-algebra-Commutative-Ring R A c x y) is-linear-left-mul-subalgebra-Commutative-Ring : (x : type-subalgebra-Commutative-Ring) → is-linear-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( mul-subalgebra-Commutative-Ring x) is-linear-left-mul-subalgebra-Commutative-Ring x = ( is-additive-left-mul-subalgebra-Commutative-Ring x , is-homogeneous-left-mul-subalgebra-Commutative-Ring x) is-linear-right-mul-subalgebra-Commutative-Ring : (y : type-subalgebra-Commutative-Ring) → is-linear-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( λ x → mul-subalgebra-Commutative-Ring x y) is-linear-right-mul-subalgebra-Commutative-Ring y = ( is-additive-right-mul-subalgebra-Commutative-Ring y , is-homogeneous-right-mul-subalgebra-Commutative-Ring y) bilinear-mul-subalgebra-Commutative-Ring : bilinear-map-left-module-Commutative-Ring ( R) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) ( left-module-subalgebra-Commutative-Ring) bilinear-mul-subalgebra-Commutative-Ring = ( mul-subalgebra-Commutative-Ring , is-linear-right-mul-subalgebra-Commutative-Ring , is-linear-left-mul-subalgebra-Commutative-Ring) algebra-subalgebra-Commutative-Ring : algebra-Commutative-Ring (l2 ⊔ l3) R algebra-subalgebra-Commutative-Ring = ( left-module-subalgebra-Commutative-Ring , bilinear-mul-subalgebra-Commutative-Ring)
External links
- Subalgebra at Wikidata
Recent changes
- 2026-02-14. Louis Wasserman. Subalgebras over commutative rings (#1842).