Baire space
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elif Uskuplu, Louis Wasserman and Victor Blanchi.
Created on 2022-06-30.
Last modified on 2025-10-25.
module set-theory.baire-space where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.double-negation-stable-equality open import foundation.function-types open import foundation.function-types-with-apartness-relations open import foundation.lawveres-fixed-point-theorem open import foundation.negation open import foundation.propositional-truncations open import foundation.sets open import foundation.tight-apartness-relations open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.identity-types open import set-theory.cantors-diagonal-argument open import set-theory.countable-sets open import set-theory.uncountable-sets
Idea
The
Baire space¶
is the set of
functions ℕ → ℕ. In other words, it is
the set of infinite sequences of
natural numbers.
Definition
baire-space : UU lzero baire-space = ℕ → ℕ
Properties
The Baire space has a tight apartness relation
tight-apartness-relation-baire-space : Tight-Apartness-Relation lzero baire-space tight-apartness-relation-baire-space = tight-apartness-relation-function-into-Type-With-Tight-Apartness ( ℕ) ( ℕ-Type-With-Tight-Apartness) baire-space-Type-With-Tight-Apartness : Type-With-Tight-Apartness lzero lzero baire-space-Type-With-Tight-Apartness = function-into-Type-With-Tight-Apartness ℕ ℕ-Type-With-Tight-Apartness
The Baire space has double negation stable equality
has-double-negation-stable-equality-baire-space : has-double-negation-stable-equality baire-space has-double-negation-stable-equality-baire-space = has-double-negation-stable-equality-type-Type-With-Tight-Apartness baire-space-Type-With-Tight-Apartness
The Baire space is a set
is-set-baire-space : is-set baire-space is-set-baire-space = is-set-function-type is-set-ℕ baire-space-Set : Set lzero baire-space-Set = (baire-space , is-set-baire-space)
The Baire space is uncountable
We give two proofs. The first proof uses that the successor function on the natural numbers has no fixed points and applies Lawvere’s fixed point theorem. The second proof uses that equality on the natural numbers is decidable, and applies Cantor’s diagonal argument.
abstract is-uncountable-baire-space : is-uncountable baire-space-Set is-uncountable-baire-space P = apply-universal-property-trunc-Prop ( is-directly-countable-is-countable baire-space-Set succ-ℕ P) ( empty-Prop) ( λ H → apply-universal-property-trunc-Prop ( fixed-point-theorem-Lawvere (pr2 H) succ-ℕ) ( empty-Prop) ( λ F → reductio-ad-absurdum (pr2 F) (has-no-fixed-points-succ-ℕ (pr1 F)))) abstract is-uncountable-baire-space' : is-uncountable baire-space-Set is-uncountable-baire-space' = is-uncountable-sequence-discrete-type-diagonal-argument-Cantor ( ℕ-Discrete-Type) ( 0) ( 1) ( is-nonzero-one-ℕ ∘ inv)
External links
- Baire space at Wikidata
- Baire space (set theory) at Wikipedia
- Baire space of sequences at Lab
Recent changes
- 2025-10-25. Fredrik Bakke. Logic, equality, apartness, and compactness (#1264).
- 2025-08-30. Louis Wasserman and Fredrik Bakke. Move sequences to
listsnamespace (#1476). - 2025-04-28. Fredrik Bakke. chore: Spelling corrections by codespell (#1415).
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-10-22. Fredrik Bakke and Egbert Rijke. Peano arithmetic (#876).