Baire space
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elif Uskuplu and Victor Blanchi.
Created on 2022-06-30.
Last modified on 2024-09-23.
module set-theory.baire-space where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.lawveres-fixed-point-theorem open import foundation.negation open import foundation.propositional-truncations open import foundation.sets open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.identity-types open import foundation-core.propositions open import set-theory.cantors-diagonal-argument open import set-theory.countable-sets open import set-theory.uncountable-sets
Idea
The
Baire space¶
is the set of
functions ℕ → ℕ
. In other words, it is
the set of infinite sequences of
natural numbers.
Definition
baire-space : UU lzero baire-space = ℕ → ℕ
Properties
The Baire space is a set
is-set-baire-space : is-set baire-space is-set-baire-space = is-set-function-type is-set-ℕ baire-space-Set : Set lzero baire-space-Set = (baire-space , is-set-baire-space)
The Baire space is uncountable
We give two proofs. The first proof uses that the successor function on the nautral numbers has no fixed points and applies Lawvere’s fixed point theorem. The second proof uses that equality on the natural numbers is decidable, and applies Cantor’s diagonal argument.
abstract is-uncountable-baire-space : is-uncountable baire-space-Set is-uncountable-baire-space P = apply-universal-property-trunc-Prop ( is-directly-countable-is-countable baire-space-Set succ-ℕ P) ( empty-Prop) ( λ H → apply-universal-property-trunc-Prop ( fixed-point-theorem-Lawvere (pr2 H) succ-ℕ) ( empty-Prop) ( λ F → reductio-ad-absurdum (pr2 F) (has-no-fixed-points-succ-ℕ (pr1 F)))) abstract is-uncountable-baire-space' : is-uncountable baire-space-Set is-uncountable-baire-space' = is-uncountable-sequence-discrete-type-diagonal-argument-Cantor ( ℕ-Discrete-Type) ( 0) ( 1) ( is-nonzero-one-ℕ ∘ inv)
External links
- Baire space at Mathswitch
- Baire space (set theory) at Wikipedia
- Baire space of sequences at Lab
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-10-22. Fredrik Bakke and Egbert Rijke. Peano arithmetic (#876).
- 2023-06-25. Fredrik Bakke. Fix alignment
where
blocks (#670). - 2023-06-15. Egbert Rijke. Replace
isretr
withis-retraction
andissec
withis-section
(#659). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).