Dependent pair types

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.

Created on 2022-01-26.
Last modified on 2024-03-02.

module foundation.dependent-pair-types where
Imports
open import foundation.universe-levels

Idea

Consider a type family B over A. The dependent pair type Σ A B is the type consisting of (dependent) pairs (a , b) where a : A and b : B a. Such pairs are sometimes called dependent pairs because the type of b depends on the value of the first component a.

Definitions

The dependent pair type

record Σ {l1 l2 : Level} (A : UU l1) (B : A  UU l2) : UU (l1  l2) where
  constructor pair
  field
    pr1 : A
    pr2 : B pr1

open Σ public

{-# BUILTIN SIGMA Σ #-}
{-# INLINE pair #-}

infixr 3 _,_
pattern _,_ a b = pair a b

The induction principle for dependent pair types

ind-Σ :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : Σ A B  UU l3} 
  ((x : A) (y : B x)  C (x , y))  (t : Σ A B)  C t
ind-Σ f (x , y) = f x y

The recursion principle for dependent pair types

rec-Σ :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : UU l3} 
  ((x : A)  B x  C)  Σ A B  C
rec-Σ = ind-Σ

The evaluation function for dependent pairs

ev-pair :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : Σ A B  UU l3} 
  ((t : Σ A B)  C t)  (x : A) (y : B x)  C (x , y)
ev-pair f x y = f (x , y)

We show that ev-pair is the inverse to ind-Σ in foundation.universal-property-dependent-pair-types.

Iterated dependent pair constructors

triple :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : (x : A)  B x  UU l3} 
  (a : A) (b : B a)  C a b  Σ A  x  Σ (B x) (C x))
triple a b c = (a , b , c)

triple' :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : Σ A B  UU l3} 
  (a : A) (b : B a)  C (pair a b)  Σ (Σ A B) C
triple' a b c = ((a , b) , c)

Families on dependent pair types

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2}
  where

  fam-Σ : ((x : A)  B x  UU l3)  Σ A B  UU l3
  fam-Σ C (x , y) = C x y

Recent changes