Bernoulli’s inequality on the positive rational numbers
Content created by malarbol.
Created on 2025-04-24.
Last modified on 2025-04-24.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.bernoullis-inequality-positive-rational-numbers where
Imports
open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers open import elementary-number-theory.geometric-sequences-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.groups
Idea
Bernoulli’s inequality¶
on the
positive rational numbers
states that for any h : ℚ⁺
, the arithmetic sequence with initial term 1
and
common difference h
is lesser than or equal to the geometric sequence with
initial term 1
and common ratio 1 + h
:
∀ (h : ℚ⁺) (n : ℕ), 1 + n * h ≤ (1 + h)ⁿ
Lemma
The ratio of two consecutive terms of a unitary arithmetic sequence of positive rational numbers is bounded:
∀ (h : ℚ⁺) (n : ℕ), 1 + (n + 1)h ≤ (1 + n h)(1 + h)
module _ (h : ℚ⁺) where abstract bounded-ratio-unitary-arithmetic-sequence-ℚ⁺ : (n : ℕ) → leq-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h (succ-ℕ n)) ( mul-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n) ( one-ℚ⁺ +ℚ⁺ h)) bounded-ratio-unitary-arithmetic-sequence-ℚ⁺ n = inv-tr ( leq-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h (succ-ℕ n))) ( ( left-distributive-mul-add-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n) ( one-ℚ⁺) ( h)) ∙ ( ap ( λ x → add-ℚ⁺ ( x) ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n *ℚ⁺ h)) ( right-unit-law-mul-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n)))) ( preserves-leq-right-add-ℚ ( rational-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n)) ( rational-ℚ⁺ h) ( rational-ℚ⁺ ( mul-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n) ( h))) ( tr ( λ x → leq-ℚ ( x) ( mul-ℚ ( rational-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n)) ( rational-ℚ⁺ h))) ( left-unit-law-mul-ℚ (rational-ℚ⁺ h)) ( preserves-leq-right-mul-ℚ⁺ ( h) ( one-ℚ) ( rational-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n)) ( leq-initial-arithmetic-sequence-ℚ⁺ ( standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h) ( n)))))
Theorem
∀ (h : ℚ⁺) (n : ℕ), 1 + n * h ≤ (1 + h)ⁿ
module _ (h : ℚ⁺) where abstract bernoullis-inequality-ℚ⁺ : (n : ℕ) → leq-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n) ( seq-standard-geometric-sequence-ℚ⁺ one-ℚ⁺ (one-ℚ⁺ +ℚ⁺ h) n) bernoullis-inequality-ℚ⁺ zero-ℕ = refl-leq-ℚ one-ℚ bernoullis-inequality-ℚ⁺ (succ-ℕ n) = transitive-leq-ℚ ( rational-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h (succ-ℕ n))) ( rational-ℚ⁺ ( mul-ℚ⁺ ( seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n) ( one-ℚ⁺ +ℚ⁺ h))) ( rational-ℚ⁺ ( seq-standard-geometric-sequence-ℚ⁺ ( one-ℚ⁺) ( one-ℚ⁺ +ℚ⁺ h) ( succ-ℕ n))) ( preserves-leq-right-mul-ℚ⁺ ( one-ℚ⁺ +ℚ⁺ h) ( rational-ℚ⁺ (seq-standard-arithmetic-sequence-ℚ⁺ one-ℚ⁺ h n)) ( rational-ℚ⁺ ( seq-standard-geometric-sequence-ℚ⁺ one-ℚ⁺ (one-ℚ⁺ +ℚ⁺ h) n)) ( bernoullis-inequality-ℚ⁺ n)) ( bounded-ratio-unitary-arithmetic-sequence-ℚ⁺ h n)
External links
- Bernoulli’s inequality at Wikidata
- Bernoulli’s inequality at Wikipedia
Recent changes
- 2025-04-24. malarbol. Bernoulli’s inequality on the positive rational numbers (#1371).