Left ideals generated by subsets of rings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2024-11-20.
module ring-theory.left-ideals-generated-by-subsets-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.powersets open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.unions-subtypes open import foundation.universe-levels open import lists.concatenation-lists open import lists.functoriality-lists open import lists.lists open import order-theory.galois-connections-large-posets open import order-theory.least-upper-bounds-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders open import order-theory.reflective-galois-connections-large-posets open import ring-theory.left-ideals-rings open import ring-theory.poset-of-left-ideals-rings open import ring-theory.rings open import ring-theory.subsets-rings
Idea
The left ideal generated by a subset S
of
a ring R
is the least left ideal in R
containing
S
.
Definitions
The universal property of left ideals generated by a subset of a ring
module _ {l1 l2 l3 : Level} (R : Ring l1) (S : subset-Ring l2 R) (I : left-ideal-Ring l3 R) (H : S ⊆ subset-left-ideal-Ring R I) where is-left-ideal-generated-by-subset-Ring : UUω is-left-ideal-generated-by-subset-Ring = {l : Level} (J : left-ideal-Ring l R) → S ⊆ subset-left-ideal-Ring R J → subset-left-ideal-Ring R I ⊆ subset-left-ideal-Ring R J
The universal property of left ideals generated by a family of subsets of a ring
module _ {l1 l2 l3 l4 : Level} (R : Ring l1) {U : UU l2} (S : U → subset-Ring l3 R) (I : left-ideal-Ring l4 R) (H : (α : U) → S α ⊆ subset-left-ideal-Ring R I) where is-left-ideal-generated-by-family-of-subsets-Ring : UUω is-left-ideal-generated-by-family-of-subsets-Ring = {l : Level} (J : left-ideal-Ring l R) → ((α : U) → S α ⊆ subset-left-ideal-Ring R J) → leq-left-ideal-Ring R I J
The universal property of left ideals generated by a family of elements in a ring
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (a : U → type-Ring R) (I : left-ideal-Ring l3 R) (H : (α : U) → is-in-left-ideal-Ring R I (a α)) where is-left-ideal-generated-by-family-of-elements-Ring : UUω is-left-ideal-generated-by-family-of-elements-Ring = {l : Level} (J : left-ideal-Ring l R) → ((α : U) → is-in-left-ideal-Ring R J (a α)) → leq-left-ideal-Ring R I J
Construction of the Galois connection of left ideals generated by subsets
Left ideals generated by subsets
module _ {l1 l2 : Level} (R : Ring l1) (S : subset-Ring l2 R) where left-formal-combination-subset-Ring : UU (l1 ⊔ l2) left-formal-combination-subset-Ring = list (type-Ring R × type-subset-Ring R S) ev-left-formal-combination-subset-Ring : left-formal-combination-subset-Ring → type-Ring R ev-left-formal-combination-subset-Ring nil = zero-Ring R ev-left-formal-combination-subset-Ring (cons (pair r s) l) = add-Ring R ( mul-Ring R r (inclusion-subset-Ring R S s)) ( ev-left-formal-combination-subset-Ring l) preserves-concat-ev-left-formal-combination-subset-Ring : (u v : left-formal-combination-subset-Ring) → ev-left-formal-combination-subset-Ring (concat-list u v) = add-Ring R ( ev-left-formal-combination-subset-Ring u) ( ev-left-formal-combination-subset-Ring v) preserves-concat-ev-left-formal-combination-subset-Ring nil v = inv (left-unit-law-add-Ring R (ev-left-formal-combination-subset-Ring v)) preserves-concat-ev-left-formal-combination-subset-Ring ( cons (pair r s) u) v = ( ap ( add-Ring R (mul-Ring R r (inclusion-subset-Ring R S s))) ( preserves-concat-ev-left-formal-combination-subset-Ring u v)) ∙ ( inv ( associative-add-Ring R ( mul-Ring R r (inclusion-subset-Ring R S s)) ( ev-left-formal-combination-subset-Ring u) ( ev-left-formal-combination-subset-Ring v))) mul-left-formal-combination-subset-Ring : type-Ring R → left-formal-combination-subset-Ring → left-formal-combination-subset-Ring mul-left-formal-combination-subset-Ring r = map-list (λ x → pair (mul-Ring R r (pr1 x)) (pr2 x)) preserves-mul-ev-left-formal-combination-subset-Ring : (r : type-Ring R) (u : left-formal-combination-subset-Ring) → ev-left-formal-combination-subset-Ring ( mul-left-formal-combination-subset-Ring r u) = mul-Ring R r (ev-left-formal-combination-subset-Ring u) preserves-mul-ev-left-formal-combination-subset-Ring r nil = inv (right-zero-law-mul-Ring R r) preserves-mul-ev-left-formal-combination-subset-Ring r (cons x u) = ( ap-add-Ring R ( associative-mul-Ring R r (pr1 x) (inclusion-subset-Ring R S (pr2 x))) ( preserves-mul-ev-left-formal-combination-subset-Ring r u)) ∙ ( inv ( left-distributive-mul-add-Ring R r ( mul-Ring R (pr1 x) (inclusion-subset-Ring R S (pr2 x))) ( ev-left-formal-combination-subset-Ring u))) subset-left-ideal-subset-Ring' : type-Ring R → UU (l1 ⊔ l2) subset-left-ideal-subset-Ring' x = fiber ev-left-formal-combination-subset-Ring x subset-left-ideal-subset-Ring : subset-Ring (l1 ⊔ l2) R subset-left-ideal-subset-Ring x = trunc-Prop (subset-left-ideal-subset-Ring' x) is-in-left-ideal-subset-Ring : type-Ring R → UU (l1 ⊔ l2) is-in-left-ideal-subset-Ring = is-in-subtype subset-left-ideal-subset-Ring contains-zero-left-ideal-subset-Ring : contains-zero-subset-Ring R subset-left-ideal-subset-Ring contains-zero-left-ideal-subset-Ring = unit-trunc-Prop (pair nil refl) is-closed-under-addition-left-ideal-subset-Ring' : (x y : type-Ring R) → subset-left-ideal-subset-Ring' x → subset-left-ideal-subset-Ring' y → subset-left-ideal-subset-Ring' (add-Ring R x y) pr1 ( is-closed-under-addition-left-ideal-subset-Ring' x y ( pair l p) (pair k q)) = concat-list l k pr2 ( is-closed-under-addition-left-ideal-subset-Ring' x y ( pair l p) (pair k q)) = ( preserves-concat-ev-left-formal-combination-subset-Ring l k) ∙ ( ap-add-Ring R p q) is-closed-under-addition-left-ideal-subset-Ring : is-closed-under-addition-subset-Ring R subset-left-ideal-subset-Ring is-closed-under-addition-left-ideal-subset-Ring {x} {y} H K = apply-universal-property-trunc-Prop H ( subset-left-ideal-subset-Ring (add-Ring R x y)) ( λ H' → apply-universal-property-trunc-Prop K ( subset-left-ideal-subset-Ring (add-Ring R x y)) ( λ K' → unit-trunc-Prop ( is-closed-under-addition-left-ideal-subset-Ring' x y H' K'))) is-closed-under-left-multiplication-left-ideal-subset-Ring' : (r x : type-Ring R) → subset-left-ideal-subset-Ring' x → subset-left-ideal-subset-Ring' (mul-Ring R r x) pr1 ( is-closed-under-left-multiplication-left-ideal-subset-Ring' r x ( pair l p)) = mul-left-formal-combination-subset-Ring r l pr2 ( is-closed-under-left-multiplication-left-ideal-subset-Ring' r x ( pair l p)) = ( preserves-mul-ev-left-formal-combination-subset-Ring r l) ∙ ( ap (mul-Ring R r) p) is-closed-under-left-multiplication-left-ideal-subset-Ring : is-closed-under-left-multiplication-subset-Ring R subset-left-ideal-subset-Ring is-closed-under-left-multiplication-left-ideal-subset-Ring r x H = apply-universal-property-trunc-Prop H ( subset-left-ideal-subset-Ring (mul-Ring R r x)) ( λ H' → unit-trunc-Prop ( is-closed-under-left-multiplication-left-ideal-subset-Ring' r x H')) is-closed-under-negatives-left-ideal-subset-Ring : is-closed-under-negatives-subset-Ring R subset-left-ideal-subset-Ring is-closed-under-negatives-left-ideal-subset-Ring {x} H = tr ( type-Prop ∘ subset-left-ideal-subset-Ring) ( mul-neg-one-Ring R x) ( is-closed-under-left-multiplication-left-ideal-subset-Ring ( neg-one-Ring R) ( x) ( H)) left-ideal-subset-Ring : left-ideal-Ring (l1 ⊔ l2) R pr1 left-ideal-subset-Ring = subset-left-ideal-subset-Ring pr1 (pr1 (pr2 left-ideal-subset-Ring)) = contains-zero-left-ideal-subset-Ring pr1 (pr2 (pr1 (pr2 left-ideal-subset-Ring))) = is-closed-under-addition-left-ideal-subset-Ring pr2 (pr2 (pr1 (pr2 left-ideal-subset-Ring))) = is-closed-under-negatives-left-ideal-subset-Ring pr2 (pr2 left-ideal-subset-Ring) = is-closed-under-left-multiplication-left-ideal-subset-Ring contains-subset-left-ideal-subset-Ring : S ⊆ subset-left-ideal-subset-Ring contains-subset-left-ideal-subset-Ring s H = unit-trunc-Prop ( pair ( cons (pair (one-Ring R) (pair s H)) nil) ( ( right-unit-law-add-Ring R (mul-Ring R (one-Ring R) s)) ∙ ( left-unit-law-mul-Ring R s))) contains-left-formal-combinations-left-ideal-subset-Ring : {l3 : Level} (I : left-ideal-Ring l3 R) → S ⊆ subset-left-ideal-Ring R I → (x : left-formal-combination-subset-Ring) → is-in-left-ideal-Ring R I (ev-left-formal-combination-subset-Ring x) contains-left-formal-combinations-left-ideal-subset-Ring I H nil = contains-zero-left-ideal-Ring R I contains-left-formal-combinations-left-ideal-subset-Ring I H ( cons (pair r (pair s K)) c) = is-closed-under-addition-left-ideal-Ring R I ( is-closed-under-left-multiplication-left-ideal-Ring R I r s (H s K)) ( contains-left-formal-combinations-left-ideal-subset-Ring I H c) is-left-ideal-generated-by-subset-left-ideal-subset-Ring : is-left-ideal-generated-by-subset-Ring R S ( left-ideal-subset-Ring) ( contains-subset-left-ideal-subset-Ring) is-left-ideal-generated-by-subset-left-ideal-subset-Ring {l} J K x H = apply-universal-property-trunc-Prop H (subset-left-ideal-Ring R J x) P where P : subset-left-ideal-subset-Ring' x → is-in-left-ideal-Ring R J x P (pair c refl) = contains-left-formal-combinations-left-ideal-subset-Ring J K c is-closed-under-eq-left-ideal-subset-Ring : {x y : type-Ring R} → is-in-left-ideal-subset-Ring x → (x = y) → is-in-left-ideal-subset-Ring y is-closed-under-eq-left-ideal-subset-Ring = is-closed-under-eq-left-ideal-Ring R left-ideal-subset-Ring is-closed-under-eq-left-ideal-subset-Ring' : {x y : type-Ring R} → is-in-left-ideal-subset-Ring y → (x = y) → is-in-left-ideal-subset-Ring x is-closed-under-eq-left-ideal-subset-Ring' = is-closed-under-eq-left-ideal-Ring' R left-ideal-subset-Ring
The subset relation is preserved by generating left ideals
module _ {l1 : Level} (A : Ring l1) where preserves-order-left-ideal-subset-Ring : {l2 l3 : Level} (S : subset-Ring l2 A) (T : subset-Ring l3 A) → S ⊆ T → leq-left-ideal-Ring A ( left-ideal-subset-Ring A S) ( left-ideal-subset-Ring A T) preserves-order-left-ideal-subset-Ring S T H = is-left-ideal-generated-by-subset-left-ideal-subset-Ring A S ( left-ideal-subset-Ring A T) ( transitive-leq-subtype S T ( subset-left-ideal-subset-Ring A T) ( contains-subset-left-ideal-subset-Ring A T) ( H)) left-ideal-subset-hom-large-poset-Ring : hom-Large-Poset ( λ l2 → l1 ⊔ l2) ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) map-hom-Large-Preorder left-ideal-subset-hom-large-poset-Ring = left-ideal-subset-Ring A preserves-order-hom-Large-Preorder left-ideal-subset-hom-large-poset-Ring = preserves-order-left-ideal-subset-Ring
The Galois connection S ↦ (S)
module _ {l1 : Level} (A : Ring l1) where adjoint-relation-left-ideal-subset-Ring : {l2 l3 : Level} (S : subset-Ring l2 A) (I : left-ideal-Ring l3 A) → leq-left-ideal-Ring A (left-ideal-subset-Ring A S) I ↔ (S ⊆ subset-left-ideal-Ring A I) pr1 (adjoint-relation-left-ideal-subset-Ring S I) H = transitive-leq-subtype S ( subset-left-ideal-subset-Ring A S) ( subset-left-ideal-Ring A I) ( H) ( contains-subset-left-ideal-subset-Ring A S) pr2 (adjoint-relation-left-ideal-subset-Ring S I) = is-left-ideal-generated-by-subset-left-ideal-subset-Ring A S I left-ideal-subset-galois-connection-Ring : galois-connection-Large-Poset ( l1 ⊔_) (λ l → l) ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) lower-adjoint-galois-connection-Large-Poset left-ideal-subset-galois-connection-Ring = left-ideal-subset-hom-large-poset-Ring A upper-adjoint-galois-connection-Large-Poset left-ideal-subset-galois-connection-Ring = subset-left-ideal-hom-large-poset-Ring A adjoint-relation-galois-connection-Large-Poset left-ideal-subset-galois-connection-Ring = adjoint-relation-left-ideal-subset-Ring
The reflective Galois connection S ↦ (S)
module _ {l1 : Level} (A : Ring l1) where forward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring : {l2 : Level} (I : left-ideal-Ring l2 A) → leq-left-ideal-Ring A ( left-ideal-subset-Ring A (subset-left-ideal-Ring A I)) ( I) forward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring I = is-left-ideal-generated-by-subset-left-ideal-subset-Ring A ( subset-left-ideal-Ring A I) ( I) ( refl-leq-left-ideal-Ring A I) backward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring : {l2 : Level} (I : left-ideal-Ring l2 A) → leq-left-ideal-Ring A I ( left-ideal-subset-Ring A (subset-left-ideal-Ring A I)) backward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring I = contains-subset-left-ideal-subset-Ring A (subset-left-ideal-Ring A I) is-reflective-left-ideal-subset-galois-connection-Ring : is-reflective-galois-connection-Large-Poset ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) ( left-ideal-subset-galois-connection-Ring A) pr1 (is-reflective-left-ideal-subset-galois-connection-Ring I) = forward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring I pr2 (is-reflective-left-ideal-subset-galois-connection-Ring I) = backward-inclusion-is-reflective-left-ideal-subset-galois-connection-Ring I left-ideal-subset-reflective-galois-connection-Ring : reflective-galois-connection-Large-Poset ( powerset-Large-Poset (type-Ring A)) ( left-ideal-Ring-Large-Poset A) galois-connection-reflective-galois-connection-Large-Poset left-ideal-subset-reflective-galois-connection-Ring = left-ideal-subset-galois-connection-Ring A is-reflective-reflective-galois-connection-Large-Poset left-ideal-subset-reflective-galois-connection-Ring = is-reflective-left-ideal-subset-galois-connection-Ring
The left ideal generated by a family of subsets of a ring
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (S : U → subset-Ring l3 R) where generating-subset-left-ideal-family-of-subsets-Ring : subset-Ring (l2 ⊔ l3) R generating-subset-left-ideal-family-of-subsets-Ring x = union-family-of-subtypes S x left-ideal-family-of-subsets-Ring : left-ideal-Ring (l1 ⊔ l2 ⊔ l3) R left-ideal-family-of-subsets-Ring = left-ideal-subset-Ring R generating-subset-left-ideal-family-of-subsets-Ring subset-left-ideal-family-of-subsets-Ring : subset-Ring (l1 ⊔ l2 ⊔ l3) R subset-left-ideal-family-of-subsets-Ring = subset-left-ideal-subset-Ring R generating-subset-left-ideal-family-of-subsets-Ring is-in-left-ideal-family-of-subsets-Ring : type-Ring R → UU (l1 ⊔ l2 ⊔ l3) is-in-left-ideal-family-of-subsets-Ring = is-in-left-ideal-subset-Ring R generating-subset-left-ideal-family-of-subsets-Ring contains-subset-left-ideal-family-of-subsets-Ring : {α : U} → (S α) ⊆ subset-left-ideal-family-of-subsets-Ring contains-subset-left-ideal-family-of-subsets-Ring {α} x H = contains-subset-left-ideal-subset-Ring R ( generating-subset-left-ideal-family-of-subsets-Ring) ( x) ( unit-trunc-Prop (α , H)) is-left-ideal-generated-by-family-of-subsets-left-ideal-family-of-subsets-Ring : is-left-ideal-generated-by-family-of-subsets-Ring R S ( left-ideal-family-of-subsets-Ring) ( λ α → contains-subset-left-ideal-family-of-subsets-Ring) is-left-ideal-generated-by-family-of-subsets-left-ideal-family-of-subsets-Ring J H = is-left-ideal-generated-by-subset-left-ideal-subset-Ring R ( generating-subset-left-ideal-family-of-subsets-Ring) ( J) ( λ y q → apply-universal-property-trunc-Prop q ( subset-left-ideal-Ring R J y) ( λ (α , K) → H α y K))
The left ideal generated by a family of elements in a ring
module _ {l1 l2 : Level} (R : Ring l1) {I : UU l1} (a : I → type-Ring R) where generating-subset-left-ideal-family-of-elements-Ring : subset-Ring l1 R generating-subset-left-ideal-family-of-elements-Ring x = trunc-Prop (fiber a x) left-ideal-family-of-elements-Ring : left-ideal-Ring l1 R left-ideal-family-of-elements-Ring = left-ideal-subset-Ring R generating-subset-left-ideal-family-of-elements-Ring subset-left-ideal-family-of-elements-Ring : subset-Ring l1 R subset-left-ideal-family-of-elements-Ring = subset-left-ideal-subset-Ring R generating-subset-left-ideal-family-of-elements-Ring is-in-left-ideal-family-of-elements-Ring : type-Ring R → UU l1 is-in-left-ideal-family-of-elements-Ring = is-in-left-ideal-subset-Ring R generating-subset-left-ideal-family-of-elements-Ring contains-element-left-ideal-family-of-elements-Ring : (i : I) → is-in-left-ideal-family-of-elements-Ring (a i) contains-element-left-ideal-family-of-elements-Ring i = contains-subset-left-ideal-subset-Ring R ( generating-subset-left-ideal-family-of-elements-Ring) ( a i) ( unit-trunc-Prop (i , refl)) abstract is-left-ideal-generated-by-family-of-elements-left-ideal-family-of-elements-Ring : is-left-ideal-generated-by-family-of-elements-Ring R a left-ideal-family-of-elements-Ring contains-element-left-ideal-family-of-elements-Ring is-left-ideal-generated-by-family-of-elements-left-ideal-family-of-elements-Ring J H = is-left-ideal-generated-by-subset-left-ideal-subset-Ring R ( generating-subset-left-ideal-family-of-elements-Ring) ( J) ( λ x p → apply-universal-property-trunc-Prop p ( subset-left-ideal-Ring R J x) ( λ where (i , refl) → H i))
Properties
The left ideal generated by the underlying subset of an left ideal I
is I
itself
module _ {l1 l2 : Level} (R : Ring l1) (I : left-ideal-Ring l2 R) where cases-forward-inclusion-idempotent-left-ideal-subset-Ring : (l : left-formal-combination-subset-Ring R (subset-left-ideal-Ring R I)) → is-in-left-ideal-Ring R I ( ev-left-formal-combination-subset-Ring R (subset-left-ideal-Ring R I) l) cases-forward-inclusion-idempotent-left-ideal-subset-Ring nil = contains-zero-left-ideal-Ring R I cases-forward-inclusion-idempotent-left-ideal-subset-Ring ( cons (x , y , u) l) = is-closed-under-addition-left-ideal-Ring R I ( is-closed-under-left-multiplication-left-ideal-Ring R I x y u) ( cases-forward-inclusion-idempotent-left-ideal-subset-Ring l) abstract forward-inclusion-idempotent-left-ideal-subset-Ring : leq-left-ideal-Ring R ( left-ideal-subset-Ring R (subset-left-ideal-Ring R I)) ( I) forward-inclusion-idempotent-left-ideal-subset-Ring x H = apply-universal-property-trunc-Prop H ( subset-left-ideal-Ring R I x) ( λ where ( l , refl) → cases-forward-inclusion-idempotent-left-ideal-subset-Ring l) backward-inclusion-idempotent-left-ideal-subset-Ring : leq-left-ideal-Ring R ( I) ( left-ideal-subset-Ring R (subset-left-ideal-Ring R I)) backward-inclusion-idempotent-left-ideal-subset-Ring = contains-subset-left-ideal-subset-Ring R (subset-left-ideal-Ring R I) idempotent-left-ideal-subset-Ring : has-same-elements-left-ideal-Ring R ( left-ideal-subset-Ring R (subset-left-ideal-Ring R I)) ( I) pr1 (idempotent-left-ideal-subset-Ring x) = forward-inclusion-idempotent-left-ideal-subset-Ring x pr2 (idempotent-left-ideal-subset-Ring x) = backward-inclusion-idempotent-left-ideal-subset-Ring x
The operation S ↦ (S)
preserves least upper bounds
In
ring-theory.joins-left-ideals-rings
we will convert this fact to the fact that S ↦ (S)
preserves joins.
module _ {l1 l2 l3 : Level} (R : Ring l1) {U : UU l2} (S : U → subset-Ring l3 R) where preserves-least-upper-bounds-left-ideal-subset-Ring : {l4 : Level} (T : subset-Ring l4 R) → is-least-upper-bound-family-of-elements-Large-Poset ( powerset-Large-Poset (type-Ring R)) ( S) ( T) → is-least-upper-bound-family-of-elements-Large-Poset ( left-ideal-Ring-Large-Poset R) ( λ α → left-ideal-subset-Ring R (S α)) ( left-ideal-subset-Ring R T) preserves-least-upper-bounds-left-ideal-subset-Ring = preserves-join-lower-adjoint-galois-connection-Large-Poset ( powerset-Large-Poset (type-Ring R)) ( left-ideal-Ring-Large-Poset R) ( left-ideal-subset-galois-connection-Ring R) ( S)
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).