Negative real numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.negative-real-numbers where
Imports
open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
A real number is negative¶ if it is strictly less than zero.
Definition
is-negative-prop-ℝ : {l : Level} (x : ℝ l) → Prop l is-negative-prop-ℝ x = le-prop-ℝ x zero-ℝ is-negative-ℝ : {l : Level} (x : ℝ l) → UU l is-negative-ℝ x = le-ℝ x zero-ℝ negative-ℝ : (l : Level) → UU (lsuc l) negative-ℝ l = type-subtype (is-negative-prop-ℝ {l}) ℝ⁻ : (l : Level) → UU (lsuc l) ℝ⁻ = negative-ℝ real-ℝ⁻ : {l : Level} → ℝ⁻ l → ℝ l real-ℝ⁻ = inclusion-subtype is-negative-prop-ℝ
Properties
Characterization of equality
abstract eq-ℝ⁻ : {l : Level} (x y : ℝ⁻ l) → (real-ℝ⁻ x = real-ℝ⁻ y) → x = y eq-ℝ⁻ _ _ = eq-type-subtype is-negative-prop-ℝ
A real number is negative if and only if a negative rational number is in its upper cut
module _ {l : Level} (x : ℝ l) where opaque unfolding le-ℝ real-ℚ exists-ℚ⁻-in-upper-cut-is-negative-ℝ : is-negative-ℝ x → exists ℚ⁻ (λ p → upper-cut-ℝ x (rational-ℚ⁻ p)) exists-ℚ⁻-in-upper-cut-is-negative-ℝ = elim-exists ( ∃ ℚ⁻ (λ p → upper-cut-ℝ x (rational-ℚ⁻ p))) ( λ p (x<p , p<0) → intro-exists (p , is-negative-le-zero-ℚ p p<0) x<p) is-negative-exists-ℚ⁻-in-upper-cut-ℝ : exists ℚ⁻ (λ p → upper-cut-ℝ x (rational-ℚ⁻ p)) → is-negative-ℝ x is-negative-exists-ℚ⁻-in-upper-cut-ℝ = elim-exists ( is-negative-prop-ℝ x) ( λ (p , is-neg-p) x<p → intro-exists p (x<p , le-zero-is-negative-ℚ p is-neg-p)) is-negative-iff-exists-ℚ⁻-in-upper-cut-ℝ : is-negative-ℝ x ↔ exists ℚ⁻ (λ p → upper-cut-ℝ x (rational-ℚ⁻ p)) is-negative-iff-exists-ℚ⁻-in-upper-cut-ℝ = ( exists-ℚ⁻-in-upper-cut-is-negative-ℝ , is-negative-exists-ℚ⁻-in-upper-cut-ℝ)
Recent changes
- 2025-10-15. Louis Wasserman. Multiplicative inverses of nonzero real numbers (#1571).