Adjunctions between large categories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-17.
Last modified on 2024-04-25.
module category-theory.adjunctions-large-categories where
Imports
open import category-theory.adjunctions-large-precategories open import category-theory.functors-large-categories open import category-theory.large-categories open import category-theory.natural-transformations-functors-large-categories open import foundation.commuting-squares-of-maps open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels
Idea
Let C
and D
be two large categories.
Two functors F : C → D
and
G : D → C
constitute an adjoint pair if
- for each pair of objects
X
inC
andY
inD
, there is an equivalenceϕ X Y : hom (F X) Y ≃ hom X (G Y)
such that - for every pair of morhpisms
f : X₂ → X₁
andg : Y₁ → Y₂
the following square commutes:
ϕ X₁ Y₁
hom (F X₁) Y₁ --------> hom X₁ (G Y₁)
| |
g ∘ - ∘ F f | | G g ∘ - ∘ f
| |
∨ ∨
hom (F X₂) Y₂ --------> hom X₂ (G Y₂)
ϕ X₂ Y₂
In this case we say that F
is left adjoint to G
and G
is right
adjoint to F
, and write this as F ⊣ G
.
Note: The direction of the equivalence ϕ X Y
is chosen in such a way that
it often coincides with the direction of the natural map. For example, in the
abelianization adjunction, the natural
candidate for an equivalence is given by precomposition
- ∘ η : hom (abelianization-Group G) A → hom G (group-Ab A)
by the unit of the adjunction.
Definition
The predicate of being an adjoint pair of functors
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : functor-Large-Category γF C D) (G : functor-Large-Category γG D C) where family-of-equivalences-adjoint-pair-Large-Category : UUω family-of-equivalences-adjoint-pair-Large-Category = family-of-equivalences-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) naturality-family-of-equivalences-adjoint-pair-Large-Category : family-of-equivalences-adjoint-pair-Large-Category → UUω naturality-family-of-equivalences-adjoint-pair-Large-Category = naturality-family-of-equivalences-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) is-adjoint-pair-Large-Category : UUω is-adjoint-pair-Large-Category = is-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) equiv-is-adjoint-pair-Large-Category : is-adjoint-pair-Large-Category → family-of-equivalences-adjoint-pair-Large-Category equiv-is-adjoint-pair-Large-Category = equiv-is-adjoint-pair-Large-Precategory naturality-equiv-is-adjoint-pair-Large-Category : (H : is-adjoint-pair-Large-Category) → naturality-family-of-equivalences-adjoint-pair-Large-Category ( equiv-is-adjoint-pair-Large-Precategory H) naturality-equiv-is-adjoint-pair-Large-Category = naturality-equiv-is-adjoint-pair-Large-Precategory map-equiv-is-adjoint-pair-Large-Category : (H : is-adjoint-pair-Large-Category) {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category D (obj-functor-Large-Category C D F X) Y → hom-Large-Category C X (obj-functor-Large-Category D C G Y) map-equiv-is-adjoint-pair-Large-Category = map-equiv-is-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) inv-equiv-is-adjoint-pair-Large-Category : (H : is-adjoint-pair-Large-Category) {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category C X (obj-functor-Large-Category D C G Y) ≃ hom-Large-Category D (obj-functor-Large-Category C D F X) Y inv-equiv-is-adjoint-pair-Large-Category = inv-equiv-is-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) map-inv-equiv-is-adjoint-pair-Large-Category : (H : is-adjoint-pair-Large-Category) {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category C X (obj-functor-Large-Category D C G Y) → hom-Large-Category D (obj-functor-Large-Category C D F X) Y map-inv-equiv-is-adjoint-pair-Large-Category = map-inv-equiv-is-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G) naturality-inv-equiv-is-adjoint-pair-Large-Category : ( H : is-adjoint-pair-Large-Category) { l1 l2 l3 l4 : Level} { X1 : obj-Large-Category C l1} { X2 : obj-Large-Category C l2} { Y1 : obj-Large-Category D l3} { Y2 : obj-Large-Category D l4} ( f : hom-Large-Category C X2 X1) ( g : hom-Large-Category D Y1 Y2) → coherence-square-maps ( map-inv-equiv-is-adjoint-pair-Large-Category H X1 Y1) ( λ h → comp-hom-Large-Category C ( comp-hom-Large-Category C (hom-functor-Large-Category D C G g) h) ( f)) ( λ h → comp-hom-Large-Category D ( comp-hom-Large-Category D g h) ( hom-functor-Large-Category C D F f)) ( map-inv-equiv-is-adjoint-pair-Large-Category H X2 Y2) naturality-inv-equiv-is-adjoint-pair-Large-Category = naturality-inv-equiv-is-adjoint-pair-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) ( G)
The predicate of being a left adjoint
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Category αC βC} {D : Large-Category αD βD} (G : functor-Large-Category γG D C) (F : functor-Large-Category γF C D) where is-left-adjoint-functor-Large-Category : UUω is-left-adjoint-functor-Large-Category = is-adjoint-pair-Large-Category C D F G
The predicate of being a right adjoint
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Category αC βC} {D : Large-Category αD βD} (F : functor-Large-Category γF C D) (G : functor-Large-Category γG D C) where is-right-adjoint-functor-Large-Category : UUω is-right-adjoint-functor-Large-Category = is-adjoint-pair-Large-Category C D F G
Adjunctions of large precategories
module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} (γ δ : Level → Level) (C : Large-Category αC βC) (D : Large-Category αD βD) where Adjunction-Large-Category : UUω Adjunction-Large-Category = Adjunction-Large-Precategory γ δ ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} {γ δ : Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : Adjunction-Large-Category γ δ C D) where left-adjoint-Adjunction-Large-Category : functor-Large-Category γ C D left-adjoint-Adjunction-Large-Category = left-adjoint-Adjunction-Large-Precategory F right-adjoint-Adjunction-Large-Category : functor-Large-Category δ D C right-adjoint-Adjunction-Large-Category = right-adjoint-Adjunction-Large-Precategory F is-adjoint-pair-Adjunction-Large-Category : is-adjoint-pair-Large-Category C D ( left-adjoint-Adjunction-Large-Category) ( right-adjoint-Adjunction-Large-Category) is-adjoint-pair-Adjunction-Large-Category = is-adjoint-pair-Adjunction-Large-Precategory F obj-left-adjoint-Adjunction-Large-Category : {l : Level} → obj-Large-Category C l → obj-Large-Category D (γ l) obj-left-adjoint-Adjunction-Large-Category = obj-left-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) hom-left-adjoint-Adjunction-Large-Category : {l1 l2 : Level} {X : obj-Large-Category C l1} {Y : obj-Large-Category C l2} → hom-Large-Category C X Y → hom-Large-Category D ( obj-left-adjoint-Adjunction-Large-Category X) ( obj-left-adjoint-Adjunction-Large-Category Y) hom-left-adjoint-Adjunction-Large-Category = hom-left-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) preserves-id-left-adjoint-Adjunction-Large-Category : {l1 : Level} (X : obj-Large-Category C l1) → hom-left-adjoint-Adjunction-Large-Category ( id-hom-Large-Category C {X = X}) = id-hom-Large-Category D preserves-id-left-adjoint-Adjunction-Large-Category = preserves-id-left-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) obj-right-adjoint-Adjunction-Large-Category : {l1 : Level} → obj-Large-Category D l1 → obj-Large-Category C (δ l1) obj-right-adjoint-Adjunction-Large-Category = obj-right-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) hom-right-adjoint-Adjunction-Large-Category : {l1 l2 : Level} {X : obj-Large-Category D l1} {Y : obj-Large-Category D l2} → hom-Large-Category D X Y → hom-Large-Category C ( obj-right-adjoint-Adjunction-Large-Category X) ( obj-right-adjoint-Adjunction-Large-Category Y) hom-right-adjoint-Adjunction-Large-Category = hom-right-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) preserves-id-right-adjoint-Adjunction-Large-Category : {l : Level} (Y : obj-Large-Category D l) → hom-right-adjoint-Adjunction-Large-Category ( id-hom-Large-Category D {X = Y}) = id-hom-Large-Category C preserves-id-right-adjoint-Adjunction-Large-Category = preserves-id-right-adjoint-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) equiv-is-adjoint-pair-Adjunction-Large-Category : family-of-equivalences-adjoint-pair-Large-Category C D ( left-adjoint-Adjunction-Large-Category) ( right-adjoint-Adjunction-Large-Category) equiv-is-adjoint-pair-Adjunction-Large-Category = equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) map-equiv-is-adjoint-pair-Adjunction-Large-Category : {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category D ( obj-left-adjoint-Adjunction-Large-Category X) ( Y) → hom-Large-Category C ( X) ( obj-right-adjoint-Adjunction-Large-Category Y) map-equiv-is-adjoint-pair-Adjunction-Large-Category = map-equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) naturality-equiv-is-adjoint-pair-Adjunction-Large-Category : naturality-family-of-equivalences-adjoint-pair-Large-Category C D ( left-adjoint-Adjunction-Large-Category) ( right-adjoint-Adjunction-Large-Category) ( equiv-is-adjoint-pair-Adjunction-Large-Category) naturality-equiv-is-adjoint-pair-Adjunction-Large-Category = naturality-equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) inv-equiv-is-adjoint-pair-Adjunction-Large-Category : {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category C ( X) ( obj-right-adjoint-Adjunction-Large-Category Y) ≃ hom-Large-Category D ( obj-left-adjoint-Adjunction-Large-Category X) ( Y) inv-equiv-is-adjoint-pair-Adjunction-Large-Category = inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) map-inv-equiv-is-adjoint-pair-Adjunction-Large-Category : {l1 l2 : Level} (X : obj-Large-Category C l1) (Y : obj-Large-Category D l2) → hom-Large-Category C ( X) ( obj-right-adjoint-Adjunction-Large-Category Y) → hom-Large-Category D ( obj-left-adjoint-Adjunction-Large-Category X) ( Y) map-inv-equiv-is-adjoint-pair-Adjunction-Large-Category = map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Category : {l1 l2 l3 l4 : Level} {X1 : obj-Large-Category C l1} {X2 : obj-Large-Category C l2} {Y1 : obj-Large-Category D l3} {Y2 : obj-Large-Category D l4} (f : hom-Large-Category C X2 X1) (g : hom-Large-Category D Y1 Y2) → coherence-square-maps ( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Category X1 Y1) ( λ h → comp-hom-Large-Category C ( comp-hom-Large-Category C ( hom-right-adjoint-Adjunction-Large-Category g) ( h)) ( f)) ( λ h → comp-hom-Large-Category D ( comp-hom-Large-Category D g h) ( hom-left-adjoint-Adjunction-Large-Category f)) ( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Category X2 Y2) naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Category = naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F)
The unit of an adjunction
Given an adjoint pair F ⊣ G
, we construct a natural transformation
η : id → G ∘ F
called the unit of the adjunction.
module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} {γ δ : Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : Adjunction-Large-Category γ δ C D) where hom-unit-Adjunction-Large-Category : family-of-morphisms-functor-Large-Category C C ( id-functor-Large-Category C) ( comp-functor-Large-Category C D C ( right-adjoint-Adjunction-Large-Category C D F) ( left-adjoint-Adjunction-Large-Category C D F)) hom-unit-Adjunction-Large-Category = hom-unit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) naturality-unit-Adjunction-Large-Category : naturality-family-of-morphisms-functor-Large-Category C C ( id-functor-Large-Category C) ( comp-functor-Large-Category C D C ( right-adjoint-Adjunction-Large-Category C D F) ( left-adjoint-Adjunction-Large-Category C D F)) ( hom-unit-Adjunction-Large-Category) naturality-unit-Adjunction-Large-Category = naturality-unit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) unit-Adjunction-Large-Category : natural-transformation-Large-Category C C ( id-functor-Large-Category C) ( comp-functor-Large-Category C D C ( right-adjoint-Adjunction-Large-Category C D F) ( left-adjoint-Adjunction-Large-Category C D F)) unit-Adjunction-Large-Category = unit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F)
The counit of an adjunction
Given an adjoint pair F ⊣ G
, we construct a natural transformation
ε : F ∘ G → id
called the counit of the adjunction.
module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} {γ δ : Level → Level} (C : Large-Category αC βC) (D : Large-Category αD βD) (F : Adjunction-Large-Category γ δ C D) where hom-counit-Adjunction-Large-Category : family-of-morphisms-functor-Large-Category D D ( comp-functor-Large-Category D C D ( left-adjoint-Adjunction-Large-Category C D F) ( right-adjoint-Adjunction-Large-Category C D F)) ( id-functor-Large-Category D) hom-counit-Adjunction-Large-Category = hom-counit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) naturality-counit-Adjunction-Large-Category : naturality-family-of-morphisms-functor-Large-Category D D ( comp-functor-Large-Category D C D ( left-adjoint-Adjunction-Large-Category C D F) ( right-adjoint-Adjunction-Large-Category C D F)) ( id-functor-Large-Category D) ( hom-counit-Adjunction-Large-Category) naturality-counit-Adjunction-Large-Category = naturality-counit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F) counit-Adjunction-Large-Category : natural-transformation-Large-Category D D ( comp-functor-Large-Category D C D ( left-adjoint-Adjunction-Large-Category C D F) ( right-adjoint-Adjunction-Large-Category C D F)) ( id-functor-Large-Category D) counit-Adjunction-Large-Category = counit-Adjunction-Large-Precategory ( large-precategory-Large-Category C) ( large-precategory-Large-Category D) ( F)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-25. Egbert Rijke. Reverse the direction of the equivalences on hom-sets in adjunctions (#943).
- 2023-10-17. Egbert Rijke and Fredrik Bakke. Adjunctions of large categories and some minor refactoring (#854).