The Bell numbers
Content created by Egbert Rijke.
Created on 2025-02-11.
Last modified on 2025-02-11.
module elementary-number-theory.bell-numbers where
Imports
open import elementary-number-theory.binomial-coefficients open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import elementary-number-theory.strong-induction-natural-numbers open import elementary-number-theory.sums-of-natural-numbers
Idea
The Bell numbers¶ count the number of ways to partition a set of size . The Bell numbers can be defined recursively by and
The Bell numbers are listed as sequence A000110 in the OEIS [OEIS].
Definitions
The Bell numbers
bell-number-ℕ : ℕ → ℕ bell-number-ℕ = strong-rec-ℕ 1 ( λ n B → bounded-sum-ℕ ( succ-ℕ n) ( λ k H → binomial-coefficient-ℕ n k *ℕ B k (leq-le-succ-ℕ k n H)))
References
- [OEIS]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. website. URL: https://oeis.org.
External links
- Bell number at Mathswitch
Recent changes
- 2025-02-11. Egbert Rijke. The Bell numbers (#1315).