Linear maps between left modules over rings
Content created by Louis Wasserman and malarbol.
Created on 2025-05-18.
Last modified on 2026-01-30.
module linear-algebra.linear-maps-left-modules-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.conjunction open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.homomorphisms-abelian-groups open import linear-algebra.left-modules-rings open import ring-theory.rings
Idea
A
linear map¶
between left modules is a map f with
the following properties:
- Additivity:
f (a + b) = f a + f b - Homogeneity:
f (c * a) = c * f a
Definition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : type-left-module-Ring R M → type-left-module-Ring R N) where is-additive-map-prop-left-module-Ring : Prop (l2 ⊔ l3) is-additive-map-prop-left-module-Ring = Π-Prop ( type-left-module-Ring R M) ( λ x → Π-Prop ( type-left-module-Ring R M) ( λ y → Id-Prop ( set-left-module-Ring R N) ( f (add-left-module-Ring R M x y)) ( add-left-module-Ring R N (f x) (f y)))) is-additive-map-left-module-Ring : UU (l2 ⊔ l3) is-additive-map-left-module-Ring = type-Prop is-additive-map-prop-left-module-Ring is-homogeneous-map-prop-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-prop-left-module-Ring = Π-Prop ( type-Ring R) ( λ c → Π-Prop ( type-left-module-Ring R M) ( λ x → Id-Prop ( set-left-module-Ring R N) ( f (mul-left-module-Ring R M c x)) ( mul-left-module-Ring R N c (f x)))) is-homogeneous-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3) is-homogeneous-map-left-module-Ring = type-Prop is-homogeneous-map-prop-left-module-Ring is-linear-map-prop-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-linear-map-prop-left-module-Ring = is-additive-map-prop-left-module-Ring ∧ is-homogeneous-map-prop-left-module-Ring is-linear-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3) is-linear-map-left-module-Ring = type-Prop is-linear-map-prop-left-module-Ring is-additive-is-linear-map-left-module-Ring : is-linear-map-left-module-Ring → (x y : type-left-module-Ring R M) → f (add-left-module-Ring R M x y) = add-left-module-Ring R N (f x) (f y) is-additive-is-linear-map-left-module-Ring = pr1 is-homogeneous-is-linear-map-left-module-Ring : is-linear-map-left-module-Ring → (c : type-Ring R) (x : type-left-module-Ring R M) → f (mul-left-module-Ring R M c x) = mul-left-module-Ring R N c (f x) is-homogeneous-is-linear-map-left-module-Ring = pr2 module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where linear-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3) linear-map-left-module-Ring = Σ ( type-left-module-Ring R M → type-left-module-Ring R N) ( is-linear-map-left-module-Ring R M N) map-linear-map-left-module-Ring : linear-map-left-module-Ring → type-left-module-Ring R M → type-left-module-Ring R N map-linear-map-left-module-Ring = pr1 is-linear-map-linear-map-left-module-Ring : (f : linear-map-left-module-Ring) → is-linear-map-left-module-Ring R M N (map-linear-map-left-module-Ring f) is-linear-map-linear-map-left-module-Ring = pr2 is-additive-map-linear-map-left-module-Ring : (f : linear-map-left-module-Ring) → is-additive-map-left-module-Ring R M N (map-linear-map-left-module-Ring f) is-additive-map-linear-map-left-module-Ring = is-additive-is-linear-map-left-module-Ring R M N _ ∘ is-linear-map-linear-map-left-module-Ring is-homogeneous-map-linear-map-left-module-Ring : (f : linear-map-left-module-Ring) → is-homogeneous-map-left-module-Ring R M N ( map-linear-map-left-module-Ring f) is-homogeneous-map-linear-map-left-module-Ring = is-homogeneous-is-linear-map-left-module-Ring R M N _ ∘ is-linear-map-linear-map-left-module-Ring
Properties
A linear map is an abelian group homomorphism on the abelian groups of the left modules
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where hom-ab-linear-map-left-module-Ring : linear-map-left-module-Ring R M N → hom-Ab (ab-left-module-Ring R M) (ab-left-module-Ring R N) hom-ab-linear-map-left-module-Ring (f , H , _) = (f , H _ _)
A linear map maps zero to zero
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where abstract is-zero-map-zero-linear-map-left-module-Ring : (f : linear-map-left-module-Ring R M N) → map-linear-map-left-module-Ring R M N f (zero-left-module-Ring R M) = zero-left-module-Ring R N is-zero-map-zero-linear-map-left-module-Ring f = preserves-zero-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R N) ( hom-ab-linear-map-left-module-Ring R M N f)
A linear map maps -x to the negation of the map of x
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where abstract map-neg-linear-map-left-module-Ring : (f : linear-map-left-module-Ring R M N) → (x : type-left-module-Ring R M) → map-linear-map-left-module-Ring R M N f (neg-left-module-Ring R M x) = neg-left-module-Ring R N (map-linear-map-left-module-Ring R M N f x) map-neg-linear-map-left-module-Ring f _ = preserves-negatives-hom-Ab ( ab-left-module-Ring R M) ( ab-left-module-Ring R N) ( hom-ab-linear-map-left-module-Ring R M N f)
The composition of linear maps is linear
module _ {lr l1 l2 l3 : Level} (R : Ring lr) (M : left-module-Ring l1 R) (N : left-module-Ring l2 R) (K : left-module-Ring l3 R) (g : type-left-module-Ring R N → type-left-module-Ring R K) (f : type-left-module-Ring R M → type-left-module-Ring R N) where abstract is-additive-map-comp-left-module-Ring : is-additive-map-left-module-Ring R N K g → is-additive-map-left-module-Ring R M N f → is-additive-map-left-module-Ring R M K (g ∘ f) is-additive-map-comp-left-module-Ring Hg Hf x y = ap g (Hf x y) ∙ Hg (f x) (f y) is-homogeneous-map-comp-left-module-Ring : is-homogeneous-map-left-module-Ring R N K g → is-homogeneous-map-left-module-Ring R M N f → is-homogeneous-map-left-module-Ring R M K (g ∘ f) is-homogeneous-map-comp-left-module-Ring Hg Hf c x = ap g (Hf c x) ∙ Hg c (f x) is-linear-map-comp-left-module-Ring : is-linear-map-left-module-Ring R N K g → is-linear-map-left-module-Ring R M N f → is-linear-map-left-module-Ring R M K (g ∘ f) is-linear-map-comp-left-module-Ring Hg Hf = ( is-additive-map-comp-left-module-Ring ( is-additive-is-linear-map-left-module-Ring R N K g Hg) ( is-additive-is-linear-map-left-module-Ring R M N f Hf)) , ( is-homogeneous-map-comp-left-module-Ring ( is-homogeneous-is-linear-map-left-module-Ring R N K g Hg) ( is-homogeneous-is-linear-map-left-module-Ring R M N f Hf))
The linear composition of linear maps between left modules
module _ {lr l1 l2 l3 : Level} (R : Ring lr) (M : left-module-Ring l1 R) (N : left-module-Ring l2 R) (K : left-module-Ring l3 R) (g : linear-map-left-module-Ring R N K) (f : linear-map-left-module-Ring R M N) where comp-linear-map-left-module-Ring : linear-map-left-module-Ring R M K comp-linear-map-left-module-Ring = ( map-linear-map-left-module-Ring R N K g ∘ map-linear-map-left-module-Ring R M N f) , ( is-linear-map-comp-left-module-Ring R M N K ( map-linear-map-left-module-Ring R N K g) ( map-linear-map-left-module-Ring R M N f) ( is-linear-map-linear-map-left-module-Ring R N K g) ( is-linear-map-linear-map-left-module-Ring R M N f))
The constant map to zero is a linear map
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where abstract is-additive-const-zero-map-left-module-Ring : is-additive-map-left-module-Ring R M N ( const (type-left-module-Ring R M) (zero-left-module-Ring R N)) is-additive-const-zero-map-left-module-Ring _ _ = inv (left-unit-law-add-left-module-Ring R N _) is-homogeneous-const-zero-map-left-module-Ring : is-homogeneous-map-left-module-Ring R M N ( const (type-left-module-Ring R M) (zero-left-module-Ring R N)) is-homogeneous-const-zero-map-left-module-Ring _ _ = inv (right-zero-law-mul-left-module-Ring R N _) is-linear-const-zero-map-left-module-Ring : is-linear-map-left-module-Ring R M N ( const (type-left-module-Ring R M) (zero-left-module-Ring R N)) is-linear-const-zero-map-left-module-Ring = ( is-additive-const-zero-map-left-module-Ring , is-homogeneous-const-zero-map-left-module-Ring) const-zero-linear-map-left-module-Ring : linear-map-left-module-Ring R M N const-zero-linear-map-left-module-Ring = ( const (type-left-module-Ring R M) (zero-left-module-Ring R N) , is-linear-const-zero-map-left-module-Ring)
If two linear maps are homotopic, they are equal
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f g : linear-map-left-module-Ring R M N) where abstract eq-htpy-linear-map-left-module-Ring : ( ( map-linear-map-left-module-Ring R M N f) ~ ( map-linear-map-left-module-Ring R M N g)) → f = g eq-htpy-linear-map-left-module-Ring f~g = eq-type-subtype ( is-linear-map-prop-left-module-Ring R M N) ( eq-htpy f~g)
See also
- Linear maps between left modules over commutative rings
- Linear maps between vector spaces
- Addition of linear maps on left modules
- Negation of linear maps on left modules
External links
- Linear map at Wikidata
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).
- 2025-05-18. Louis Wasserman and malarbol. Linear maps over modules (#1395).