Distributive lattices
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-05-27.
Last modified on 2023-06-25.
module order-theory.distributive-lattices where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.join-semilattices open import order-theory.lattices open import order-theory.meet-semilattices open import order-theory.posets
Idea
A distributive lattice is a lattice in which meets distribute over joins.
Definition
module _ {l1 l2 : Level} (L : Lattice l1 l2) where is-distributive-lattice-Prop : Prop l1 is-distributive-lattice-Prop = Π-Prop ( type-Lattice L) ( λ x → Π-Prop ( type-Lattice L) ( λ y → Π-Prop ( type-Lattice L) ( λ z → Id-Prop ( set-Lattice L) ( meet-Lattice L x (join-Lattice L y z)) ( join-Lattice L (meet-Lattice L x y) (meet-Lattice L x z))))) is-distributive-Lattice : UU l1 is-distributive-Lattice = type-Prop is-distributive-lattice-Prop is-prop-is-distributive-Lattice : is-prop is-distributive-Lattice is-prop-is-distributive-Lattice = is-prop-type-Prop is-distributive-lattice-Prop Distributive-Lattice : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Distributive-Lattice l1 l2 = Σ (Lattice l1 l2) is-distributive-Lattice module _ {l1 l2 : Level} (L : Distributive-Lattice l1 l2) where lattice-Distributive-Lattice : Lattice l1 l2 lattice-Distributive-Lattice = pr1 L poset-Distributive-Lattice : Poset l1 l2 poset-Distributive-Lattice = poset-Lattice lattice-Distributive-Lattice type-Distributive-Lattice : UU l1 type-Distributive-Lattice = type-Lattice lattice-Distributive-Lattice leq-Distributive-Lattice-Prop : (x y : type-Distributive-Lattice) → Prop l2 leq-Distributive-Lattice-Prop = leq-lattice-Prop lattice-Distributive-Lattice leq-Distributive-Lattice : (x y : type-Distributive-Lattice) → UU l2 leq-Distributive-Lattice = leq-Lattice lattice-Distributive-Lattice is-prop-leq-Distributive-Lattice : (x y : type-Distributive-Lattice) → is-prop (leq-Distributive-Lattice x y) is-prop-leq-Distributive-Lattice = is-prop-leq-Lattice lattice-Distributive-Lattice refl-leq-Distributive-Lattice : is-reflexive leq-Distributive-Lattice refl-leq-Distributive-Lattice = refl-leq-Lattice lattice-Distributive-Lattice antisymmetric-leq-Distributive-Lattice : is-antisymmetric leq-Distributive-Lattice antisymmetric-leq-Distributive-Lattice = antisymmetric-leq-Lattice lattice-Distributive-Lattice transitive-leq-Distributive-Lattice : is-transitive leq-Distributive-Lattice transitive-leq-Distributive-Lattice = transitive-leq-Lattice lattice-Distributive-Lattice is-set-type-Distributive-Lattice : is-set type-Distributive-Lattice is-set-type-Distributive-Lattice = is-set-type-Lattice lattice-Distributive-Lattice set-Distributive-Lattice : Set l1 set-Distributive-Lattice = set-Lattice lattice-Distributive-Lattice is-lattice-Distributive-Lattice : is-lattice-Poset poset-Distributive-Lattice is-lattice-Distributive-Lattice = is-lattice-Lattice lattice-Distributive-Lattice is-meet-semilattice-Distributive-Lattice : is-meet-semilattice-Poset poset-Distributive-Lattice is-meet-semilattice-Distributive-Lattice = is-meet-semilattice-Lattice lattice-Distributive-Lattice meet-semilattice-Distributive-Lattice : Meet-Semilattice l1 meet-semilattice-Distributive-Lattice = meet-semilattice-Lattice lattice-Distributive-Lattice meet-Distributive-Lattice : (x y : type-Distributive-Lattice) → type-Distributive-Lattice meet-Distributive-Lattice = meet-Lattice lattice-Distributive-Lattice is-join-semilattice-Distributive-Lattice : is-join-semilattice-Poset poset-Distributive-Lattice is-join-semilattice-Distributive-Lattice = is-join-semilattice-Lattice lattice-Distributive-Lattice join-semilattice-Distributive-Lattice : Join-Semilattice l1 join-semilattice-Distributive-Lattice = join-semilattice-Lattice lattice-Distributive-Lattice join-Distributive-Lattice : (x y : type-Distributive-Lattice) → type-Distributive-Lattice join-Distributive-Lattice = join-Lattice lattice-Distributive-Lattice distributive-meet-join-Distributive-Lattice : (x y z : type-Distributive-Lattice) → meet-Distributive-Lattice x (join-Distributive-Lattice y z) = join-Distributive-Lattice ( meet-Distributive-Lattice x y) ( meet-Distributive-Lattice x z) distributive-meet-join-Distributive-Lattice = pr2 L
Recent changes
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-07. Egbert Rijke. Cleaning up order theory some more (#599).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 2 (#592).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).