Extensionality of multiplication of real numbers as a bilinear form
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2026-01-09.
{-# OPTIONS --lossy-unification #-} module real-numbers.extensionality-multiplication-bilinear-form-real-numbers where
Imports
open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.absolute-value-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.square-roots-nonnegative-real-numbers open import real-numbers.squares-real-numbers open import real-numbers.zero-real-numbers
Idea
If the square of a real number is equal to 0, the real number is 0. This property is extensionality of multiplication as a bilinear form over the real vector space of real numbers.
Proof
abstract eq-zero-eq-zero-square-ℝ : {l : Level} (x : ℝ l) → square-ℝ x = raise-zero-ℝ l → x = raise-zero-ℝ l eq-zero-eq-zero-square-ℝ {l} x x²=0 = eq-raise-zero-is-zero-ℝ ( is-zero-is-zero-square-ℝ ( is-zero-eq-raise-zero-ℝ x²=0))
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).
- 2025-12-23. Louis Wasserman. Standardize an “is zero” predicate on the real numbers (#1752).
- 2025-11-26. Louis Wasserman. Inner product spaces (#1705).