Order preserving maps between preorders
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-05-06.
Last modified on 2024-11-20.
module order-theory.order-preserving-maps-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.propositions open import foundation.strictly-involutive-identity-types open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.torsorial-type-families open import order-theory.preorders
Idea
A map f : P → Q
between the underlying types of two preorders is said to be
order preserving if x ≤ y
in P
implies f x ≤ f y
in Q
.
Definition
Order preserving maps
module _ {l1 l2 l3 l4 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) where preserves-order-prop-Preorder : (type-Preorder P → type-Preorder Q) → Prop (l1 ⊔ l2 ⊔ l4) preserves-order-prop-Preorder f = Π-Prop ( type-Preorder P) ( λ x → Π-Prop ( type-Preorder P) ( λ y → hom-Prop ( leq-prop-Preorder P x y) ( leq-prop-Preorder Q (f x) (f y)))) preserves-order-Preorder : (type-Preorder P → type-Preorder Q) → UU (l1 ⊔ l2 ⊔ l4) preserves-order-Preorder f = type-Prop (preserves-order-prop-Preorder f) is-prop-preserves-order-Preorder : (f : type-Preorder P → type-Preorder Q) → is-prop (preserves-order-Preorder f) is-prop-preserves-order-Preorder f = is-prop-type-Prop (preserves-order-prop-Preorder f) hom-Preorder : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-Preorder = Σ (type-Preorder P → type-Preorder Q) preserves-order-Preorder map-hom-Preorder : hom-Preorder → type-Preorder P → type-Preorder Q map-hom-Preorder = pr1 preserves-order-map-hom-Preorder : (f : hom-Preorder) → preserves-order-Preorder (map-hom-Preorder f) preserves-order-map-hom-Preorder = pr2
Homotopies of order preserving maps
module _ {l1 l2 l3 l4 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) where htpy-hom-Preorder : (f g : hom-Preorder P Q) → UU (l1 ⊔ l3) htpy-hom-Preorder f g = map-hom-Preorder P Q f ~ map-hom-Preorder P Q g refl-htpy-hom-Preorder : (f : hom-Preorder P Q) → htpy-hom-Preorder f f refl-htpy-hom-Preorder f = refl-htpy htpy-eq-hom-Preorder : (f g : hom-Preorder P Q) → Id f g → htpy-hom-Preorder f g htpy-eq-hom-Preorder f .f refl = refl-htpy-hom-Preorder f is-torsorial-htpy-hom-Preorder : (f : hom-Preorder P Q) → is-torsorial (htpy-hom-Preorder f) is-torsorial-htpy-hom-Preorder f = is-torsorial-Eq-subtype ( is-torsorial-htpy (map-hom-Preorder P Q f)) ( is-prop-preserves-order-Preorder P Q) ( map-hom-Preorder P Q f) ( refl-htpy) ( preserves-order-map-hom-Preorder P Q f) is-equiv-htpy-eq-hom-Preorder : (f g : hom-Preorder P Q) → is-equiv (htpy-eq-hom-Preorder f g) is-equiv-htpy-eq-hom-Preorder f = fundamental-theorem-id ( is-torsorial-htpy-hom-Preorder f) ( htpy-eq-hom-Preorder f) extensionality-hom-Preorder : (f g : hom-Preorder P Q) → Id f g ≃ htpy-hom-Preorder f g pr1 (extensionality-hom-Preorder f g) = htpy-eq-hom-Preorder f g pr2 (extensionality-hom-Preorder f g) = is-equiv-htpy-eq-hom-Preorder f g eq-htpy-hom-Preorder : (f g : hom-Preorder P Q) → htpy-hom-Preorder f g → Id f g eq-htpy-hom-Preorder f g = map-inv-is-equiv (is-equiv-htpy-eq-hom-Preorder f g)
The identity order preserving map
module _ {l1 l2 : Level} (P : Preorder l1 l2) where preserves-order-id-Preorder : preserves-order-Preorder P P (id {A = type-Preorder P}) preserves-order-id-Preorder x y = id id-hom-Preorder : hom-Preorder P P pr1 id-hom-Preorder = id pr2 id-hom-Preorder = preserves-order-id-Preorder
Composing order preserving maps
module _ {l1 l2 l3 l4 l5 l6 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) (R : Preorder l5 l6) where preserves-order-comp-Preorder : (g : hom-Preorder Q R) (f : hom-Preorder P Q) → preserves-order-Preorder P R ( map-hom-Preorder Q R g ∘ map-hom-Preorder P Q f) preserves-order-comp-Preorder g f x y H = preserves-order-map-hom-Preorder Q R g ( map-hom-Preorder P Q f x) ( map-hom-Preorder P Q f y) ( preserves-order-map-hom-Preorder P Q f x y H) comp-hom-Preorder : (g : hom-Preorder Q R) (f : hom-Preorder P Q) → hom-Preorder P R pr1 (comp-hom-Preorder g f) = map-hom-Preorder Q R g ∘ map-hom-Preorder P Q f pr2 (comp-hom-Preorder g f) = preserves-order-comp-Preorder g f
Unit laws for composition of order preserving maps
module _ {l1 l2 l3 l4 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) where left-unit-law-comp-hom-Preorder : (f : hom-Preorder P Q) → Id ( comp-hom-Preorder P Q Q (id-hom-Preorder Q) f) f left-unit-law-comp-hom-Preorder f = eq-htpy-hom-Preorder P Q ( comp-hom-Preorder P Q Q (id-hom-Preorder Q) f) ( f) ( refl-htpy) right-unit-law-comp-hom-Preorder : (f : hom-Preorder P Q) → Id (comp-hom-Preorder P P Q f (id-hom-Preorder P)) f right-unit-law-comp-hom-Preorder f = eq-htpy-hom-Preorder P Q ( comp-hom-Preorder P P Q f (id-hom-Preorder P)) ( f) ( refl-htpy)
Associativity of composition of order preserving maps
module _ {l1 l2 l3 l4 l5 l6 l7 l8 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) (R : Preorder l5 l6) (S : Preorder l7 l8) (h : hom-Preorder R S) (g : hom-Preorder Q R) (f : hom-Preorder P Q) where associative-comp-hom-Preorder : comp-hom-Preorder P Q S (comp-hom-Preorder Q R S h g) f = comp-hom-Preorder P R S h (comp-hom-Preorder P Q R g f) associative-comp-hom-Preorder = eq-htpy-hom-Preorder P S ( comp-hom-Preorder P Q S (comp-hom-Preorder Q R S h g) f) ( comp-hom-Preorder P R S h (comp-hom-Preorder P Q R g f)) ( refl-htpy) involutive-eq-associative-comp-hom-Preorder : comp-hom-Preorder P Q S (comp-hom-Preorder Q R S h g) f =ⁱ comp-hom-Preorder P R S h (comp-hom-Preorder P Q R g f) involutive-eq-associative-comp-hom-Preorder = involutive-eq-eq associative-comp-hom-Preorder
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875).