The Zariski locale
Content created by Fredrik Bakke, Egbert Rijke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-09.
module commutative-algebra.zariski-locale where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.intersections-radical-ideals-commutative-rings open import commutative-algebra.joins-radical-ideals-commutative-rings open import commutative-algebra.poset-of-radical-ideals-commutative-rings open import foundation.universe-levels open import order-theory.large-frames open import order-theory.large-locales
Idea
The Zariski locale of a
commutative ring A
is the
large locale consisting of
radical ideals of
A
. Our proof of the fact that meets distribute over arbitrary joins uses the
fact that the intersection I ∩ J
of radical ideals is equivalently described
as the radical ideal √ IJ
of the
product ideal.
Definition
The Zariski frame
module _ {l1 : Level} (A : Commutative-Ring l1) where zariski-frame-Commutative-Ring : Large-Frame (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) l1 large-poset-Large-Frame zariski-frame-Commutative-Ring = radical-ideal-Commutative-Ring-Large-Poset A is-large-meet-semilattice-Large-Frame zariski-frame-Commutative-Ring = is-large-meet-semilattice-radical-ideal-Commutative-Ring A is-large-suplattice-Large-Frame zariski-frame-Commutative-Ring = is-large-suplattice-radical-ideal-Commutative-Ring A distributive-meet-sup-Large-Frame zariski-frame-Commutative-Ring = distributive-intersection-join-family-of-radical-ideals-Commutative-Ring A
The Zariski locale
module _ {l1 : Level} (A : Commutative-Ring l1) where zariski-locale-Commutative-Ring : Large-Locale (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) l1 zariski-locale-Commutative-Ring = zariski-frame-Commutative-Ring A
Recent changes
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).