The unit map of metric quotients of pseudometric spaces
Content created by malarbol.
Created on 2026-01-31.
Last modified on 2026-01-31.
{-# OPTIONS --lossy-unification #-} module metric-spaces.unit-map-metric-quotients-of-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalence-classes open import foundation.identity-types open import foundation.propositions open import foundation.set-quotients open import foundation.universe-levels open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.maps-pseudometric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-maps-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
The unit map¶ of the metric quotient construction is the quotient map
q : P → [P].
It is an isometry from the
pseudometric space P to the underlying pseudometric space of the
metric space [P].
Definitions
The unit map from a pseudometric space to its quotient metric space
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where map-unit-metric-quotient-Pseudometric-Space : map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) map-unit-metric-quotient-Pseudometric-Space = quotient-map (equivalence-relation-sim-Pseudometric-Space P) is-in-class-map-unit-metric-quotient-Pseudometric-Space : (x : type-Pseudometric-Space P) → is-in-class-metric-quotient-Pseudometric-Space ( P) ( map-unit-metric-quotient-Pseudometric-Space x) ( x) is-in-class-map-unit-metric-quotient-Pseudometric-Space = is-in-equivalence-class-quotient-map-set-quotient (equivalence-relation-sim-Pseudometric-Space P) map-subtype-map-unit-metric-quotient-Pseudometric-Space : (x : type-Pseudometric-Space P) → type-subtype-metric-quotient-Pseudometric-Space P (map-unit-metric-quotient-Pseudometric-Space x) map-subtype-map-unit-metric-quotient-Pseudometric-Space = inhabitant-equivalence-class-quotient-map-set-quotient (equivalence-relation-sim-Pseudometric-Space P) compute-map-unit-metric-quotient-Pseudometric-Space : (X : type-metric-quotient-Pseudometric-Space P) → {x : type-Pseudometric-Space P} → is-in-class-metric-quotient-Pseudometric-Space P X x → map-unit-metric-quotient-Pseudometric-Space x = X compute-map-unit-metric-quotient-Pseudometric-Space X {x} x∈X = eq-set-quotient-equivalence-class-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( X) ( x∈X)
Properties
The unit map is an isometry
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where abstract preserves-neighborhoods-map-unit-metric-quotient-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space P) → neighborhood-Pseudometric-Space P d x y → neighborhood-metric-quotient-Pseudometric-Space ( P) ( d) ( map-unit-metric-quotient-Pseudometric-Space P x) ( map-unit-metric-quotient-Pseudometric-Space P y) preserves-neighborhoods-map-unit-metric-quotient-Pseudometric-Space d x y d⟨x,y⟩ (x' , x≈x') (y' , y≈y') = let x~x' = sim-is-in-equivalence-class-quotient-map-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( x) ( x') ( x≈x') y~y' = sim-is-in-equivalence-class-quotient-map-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( y) ( y') ( y≈y') in preserves-neighborhoods-right-sim-Pseudometric-Space P y~y' d x' ( preserves-neighborhoods-left-sim-Pseudometric-Space ( P) ( x~x') ( d) ( y) ( d⟨x,y⟩)) reflects-neighborhoods-map-unit-metric-quotient-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space P) → neighborhood-metric-quotient-Pseudometric-Space ( P) ( d) ( map-unit-metric-quotient-Pseudometric-Space P x) ( map-unit-metric-quotient-Pseudometric-Space P y) → neighborhood-Pseudometric-Space P d x y reflects-neighborhoods-map-unit-metric-quotient-Pseudometric-Space d x y Nxy = Nxy ( map-subtype-map-unit-metric-quotient-Pseudometric-Space P x) ( map-subtype-map-unit-metric-quotient-Pseudometric-Space P y) is-isometry-map-unit-metric-quotient-Pseudometric-Space : is-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( map-unit-metric-quotient-Pseudometric-Space P) pr1 (is-isometry-map-unit-metric-quotient-Pseudometric-Space d x y) = preserves-neighborhoods-map-unit-metric-quotient-Pseudometric-Space d x y pr2 (is-isometry-map-unit-metric-quotient-Pseudometric-Space d x y) = reflects-neighborhoods-map-unit-metric-quotient-Pseudometric-Space d x y
The unit isometry from a pseudometric space to its quotient metric space
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where isometry-unit-metric-quotient-Pseudometric-Space : isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) isometry-unit-metric-quotient-Pseudometric-Space = ( map-unit-metric-quotient-Pseudometric-Space P , is-isometry-map-unit-metric-quotient-Pseudometric-Space P)
The unit short map from a pseudometric space to its quotient metric space
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where short-map-unit-metric-quotient-Pseudometric-Space : short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) short-map-unit-metric-quotient-Pseudometric-Space = short-map-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) (isometry-unit-metric-quotient-Pseudometric-Space P)
See also
- The universal property of metric quotients and short maps;
- the universal property of metric quotients and isometries.
Recent changes
- 2026-01-31. malarbol. Rename unit map metric quotient (#1795).