The precategory of monoids
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-05-06.
Last modified on 2024-03-11.
module group-theory.precategory-of-monoids where
Imports
open import category-theory.large-precategories open import category-theory.large-subprecategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.homomorphisms-monoids open import group-theory.monoids open import group-theory.precategory-of-semigroups
Idea
The precategory of monoids¶ consists of monoids and homomorphisms of monoids.
Definitions
The precategory of monoids as a subprecategory of the precategory of semigroups
Monoid-Large-Subprecategory : Large-Subprecategory (λ l → l) (λ l1 l2 → l2) Semigroup-Large-Precategory Monoid-Large-Subprecategory = λ where .subtype-obj-Large-Subprecategory l → is-unital-prop-Semigroup {l} .subtype-hom-Large-Subprecategory G H is-unital-G is-unital-H → preserves-unit-hom-prop-Semigroup (G , is-unital-G) (H , is-unital-H) .contains-id-Large-Subprecategory G is-unital-G → preserves-unit-id-hom-Monoid (G , is-unital-G) .is-closed-under-composition-Large-Subprecategory G H K g f is-unital-G is-unital-H is-unital-K unit-g unit-f → preserves-unit-comp-hom-Monoid ( G , is-unital-G) ( H , is-unital-H) ( K , is-unital-K) ( g , unit-g) ( f , unit-f)
The large precategory of monoids
Monoid-Large-Precategory : Large-Precategory lsuc (_⊔_) Monoid-Large-Precategory = large-precategory-Large-Subprecategory Monoid-Large-Subprecategory
The precategory of small monoids
Monoid-Precategory : (l : Level) → Precategory (lsuc l) l Monoid-Precategory = precategory-Large-Precategory Monoid-Large-Precategory
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-05-06. Egbert Rijke. Collecting some easily defined precategories (#598).