Greatest lower bounds in posets

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-03-24.
Last modified on 2024-11-20.

module order-theory.greatest-lower-bounds-posets where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.lower-bounds-posets
open import order-theory.posets

Idea

A greatest lower bound of a and b in a poset P is an element x such that the logical equivalence

  ((y ≤ a) ∧ (y ≤ b)) ⇔ (y ≤ x)

holds for every element y in P. Similarly, a greatest lower bound of a family a : I → P of elements of P is an element x of P such that the logical equivalence

  (∀ᵢ (y ≤ aᵢ)) ⇔ (y ≤ x)

holds for every element y in P.

Definitions

The predicate of being a greatest binary lower bound of two elements in a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2) (a b : type-Poset P)
  where

  is-greatest-binary-lower-bound-Poset-Prop : type-Poset P  Prop (l1  l2)
  is-greatest-binary-lower-bound-Poset-Prop x =
    Π-Prop
      ( type-Poset P)
      ( λ y 
        iff-Prop
          ( is-binary-lower-bound-Poset-Prop P a b y)
          ( leq-prop-Poset P y x))

  is-greatest-binary-lower-bound-Poset : type-Poset P  UU (l1  l2)
  is-greatest-binary-lower-bound-Poset x =
    type-Prop (is-greatest-binary-lower-bound-Poset-Prop x)

  is-prop-is-greatest-binary-lower-bound-Poset :
    (x : type-Poset P) 
    is-prop (is-greatest-binary-lower-bound-Poset x)
  is-prop-is-greatest-binary-lower-bound-Poset x =
    is-prop-type-Prop (is-greatest-binary-lower-bound-Poset-Prop x)

module _
  {l1 l2 : Level} (P : Poset l1 l2) {a b : type-Poset P}
  where

  forward-implication-is-greatest-binary-lower-bound-Poset :
    {x y : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    is-binary-lower-bound-Poset P a b y  leq-Poset P y x
  forward-implication-is-greatest-binary-lower-bound-Poset {x} {y} H =
    forward-implication (H y)

  backward-implication-is-greatest-binary-lower-bound-Poset :
    {x y : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    leq-Poset P y x  is-binary-lower-bound-Poset P a b y
  backward-implication-is-greatest-binary-lower-bound-Poset {x} {y} H =
    backward-implication (H y)

  prove-is-greatest-binary-lower-bound-Poset :
    {x : type-Poset P} 
    is-binary-lower-bound-Poset P a b x 
    ( (y : type-Poset P) 
      is-binary-lower-bound-Poset P a b y  leq-Poset P y x) 
    is-greatest-binary-lower-bound-Poset P a b x
  pr1 (prove-is-greatest-binary-lower-bound-Poset H K y) L = K y L
  pr2 (prove-is-greatest-binary-lower-bound-Poset H K y) L =
    is-binary-lower-bound-leq-Poset P H L

  is-binary-lower-bound-is-greatest-binary-lower-bound-Poset :
    {x : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    is-binary-lower-bound-Poset P a b x
  is-binary-lower-bound-is-greatest-binary-lower-bound-Poset {x} H =
    backward-implication-is-greatest-binary-lower-bound-Poset H
      ( refl-leq-Poset P x)

  leq-left-is-greatest-binary-lower-bound-Poset :
    {x : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    leq-Poset P x a
  leq-left-is-greatest-binary-lower-bound-Poset H =
    leq-left-is-binary-lower-bound-Poset P
      ( is-binary-lower-bound-is-greatest-binary-lower-bound-Poset H)

  leq-right-is-greatest-binary-lower-bound-Poset :
    {x : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    leq-Poset P x b
  leq-right-is-greatest-binary-lower-bound-Poset H =
    leq-right-is-binary-lower-bound-Poset P
      ( is-binary-lower-bound-is-greatest-binary-lower-bound-Poset H)

The proposition that two elements have a greatest lower bound

module _
  {l1 l2 : Level} (P : Poset l1 l2) (a b : type-Poset P)
  where

  has-greatest-binary-lower-bound-Poset : UU (l1  l2)
  has-greatest-binary-lower-bound-Poset =
    Σ (type-Poset P) (is-greatest-binary-lower-bound-Poset P a b)

  all-elements-equal-has-greatest-binary-lower-bound-Poset :
    all-elements-equal has-greatest-binary-lower-bound-Poset
  all-elements-equal-has-greatest-binary-lower-bound-Poset
    (pair u H) (pair v K) =
    eq-type-subtype
      ( is-greatest-binary-lower-bound-Poset-Prop P a b)
      ( antisymmetric-leq-Poset P u v
        ( forward-implication-is-greatest-binary-lower-bound-Poset P K
          ( is-binary-lower-bound-is-greatest-binary-lower-bound-Poset P H))
        ( forward-implication-is-greatest-binary-lower-bound-Poset P H
          ( is-binary-lower-bound-is-greatest-binary-lower-bound-Poset P K)))

  is-prop-has-greatest-binary-lower-bound-Poset :
    is-prop has-greatest-binary-lower-bound-Poset
  is-prop-has-greatest-binary-lower-bound-Poset =
    is-prop-all-elements-equal
      all-elements-equal-has-greatest-binary-lower-bound-Poset

  has-greatest-binary-lower-bound-Poset-Prop : Prop (l1  l2)
  pr1 has-greatest-binary-lower-bound-Poset-Prop =
    has-greatest-binary-lower-bound-Poset
  pr2 has-greatest-binary-lower-bound-Poset-Prop =
    is-prop-has-greatest-binary-lower-bound-Poset

module _
  {l1 l2 : Level} (P : Poset l1 l2) {a b : type-Poset P}
  where

  eq-is-greatest-binary-lower-bound-Poset :
    {x y : type-Poset P} 
    is-greatest-binary-lower-bound-Poset P a b x 
    is-greatest-binary-lower-bound-Poset P a b y 
    x  y
  eq-is-greatest-binary-lower-bound-Poset {x} {y} H K =
    ap
      ( pr1)
      ( all-elements-equal-has-greatest-binary-lower-bound-Poset P a b
        ( x , H)
        ( y , K))

Greatest lower bounds of families of elements

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} (a : I  type-Poset P)
  where

  is-greatest-lower-bound-family-of-elements-prop-Poset :
    type-Poset P  Prop (l1  l2  l3)
  is-greatest-lower-bound-family-of-elements-prop-Poset x =
    Π-Prop
      ( type-Poset P)
      ( λ y 
        iff-Prop
          ( Π-Prop I  i  leq-prop-Poset P y (a i)))
          ( leq-prop-Poset P y x))

  is-greatest-lower-bound-family-of-elements-Poset :
    type-Poset P  UU (l1  l2  l3)
  is-greatest-lower-bound-family-of-elements-Poset z =
    type-Prop (is-greatest-lower-bound-family-of-elements-prop-Poset z)

  is-prop-is-greatest-lower-bound-family-of-elements-Poset :
    (z : type-Poset P) 
    is-prop (is-greatest-lower-bound-family-of-elements-Poset z)
  is-prop-is-greatest-lower-bound-family-of-elements-Poset z =
    is-prop-type-Prop (is-greatest-lower-bound-family-of-elements-prop-Poset z)

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} {a : I  type-Poset P}
  where

  forward-implication-is-greatest-lower-bound-family-of-elements-Poset :
    {x y : type-Poset P} 
    is-greatest-lower-bound-family-of-elements-Poset P a x 
    ((i : I)  leq-Poset P y (a i))  leq-Poset P y x
  forward-implication-is-greatest-lower-bound-family-of-elements-Poset
    { x} {y} H =
    forward-implication (H y)

  backward-implication-is-greatest-lower-bound-family-of-elements-Poset :
    {x y : type-Poset P} 
    is-greatest-lower-bound-family-of-elements-Poset P a x 
    leq-Poset P y x  (i : I)  leq-Poset P y (a i)
  backward-implication-is-greatest-lower-bound-family-of-elements-Poset
    {x} {y} H =
    backward-implication (H y)

  is-lower-bound-is-greatest-lower-bound-family-of-elements-Poset :
    {x : type-Poset P} 
    is-greatest-lower-bound-family-of-elements-Poset P a x 
    is-lower-bound-family-of-elements-Poset P a x
  is-lower-bound-is-greatest-lower-bound-family-of-elements-Poset {x} H =
    backward-implication-is-greatest-lower-bound-family-of-elements-Poset H
      ( refl-leq-Poset P x)

The proposition that a family of elements has a greatest lower bound

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} (a : I  type-Poset P)
  where

  has-greatest-lower-bound-family-of-elements-Poset : UU (l1  l2  l3)
  has-greatest-lower-bound-family-of-elements-Poset =
    Σ (type-Poset P) (is-greatest-lower-bound-family-of-elements-Poset P a)

  all-elements-equal-has-greatest-lower-bound-family-of-elements-Poset :
    all-elements-equal has-greatest-lower-bound-family-of-elements-Poset
  all-elements-equal-has-greatest-lower-bound-family-of-elements-Poset
    ( x , H) (y , K) =
    eq-type-subtype
      ( is-greatest-lower-bound-family-of-elements-prop-Poset P a)
      ( antisymmetric-leq-Poset P x y
        ( forward-implication-is-greatest-lower-bound-family-of-elements-Poset
          ( P)
          ( K)
          ( is-lower-bound-is-greatest-lower-bound-family-of-elements-Poset
            ( P)
            ( H)))
        ( forward-implication-is-greatest-lower-bound-family-of-elements-Poset
          ( P)
          ( H)
          ( is-lower-bound-is-greatest-lower-bound-family-of-elements-Poset
            ( P)
            ( K))))

  is-prop-has-greatest-lower-bound-family-of-elements-Poset :
    is-prop has-greatest-lower-bound-family-of-elements-Poset
  is-prop-has-greatest-lower-bound-family-of-elements-Poset =
    is-prop-all-elements-equal
      all-elements-equal-has-greatest-lower-bound-family-of-elements-Poset

  has-greatest-lower-bound-family-of-elements-prop-Poset : Prop (l1  l2  l3)
  pr1 has-greatest-lower-bound-family-of-elements-prop-Poset =
    has-greatest-lower-bound-family-of-elements-Poset
  pr2 has-greatest-lower-bound-family-of-elements-prop-Poset =
    is-prop-has-greatest-lower-bound-family-of-elements-Poset

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} {a : I  type-Poset P}
  where

  eq-is-greatest-lower-bound-family-of-elements-Poset :
    {x y : type-Poset P} 
    is-greatest-lower-bound-family-of-elements-Poset P a x 
    is-greatest-lower-bound-family-of-elements-Poset P a y 
    x  y
  eq-is-greatest-lower-bound-family-of-elements-Poset {x} {y} H K =
    ap
      ( pr1)
      ( all-elements-equal-has-greatest-lower-bound-family-of-elements-Poset
        ( P)
        ( a)
        ( x , H)
        ( y , K))

Recent changes