Sums of finite sequences of real numbers
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2026-01-09.
module real-numbers.sums-of-finite-sequences-of-real-numbers where
Imports
open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.sums-of-finite-sequences-of-elements-abelian-groups open import lists.finite-sequences open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.large-additive-group-of-real-numbers open import real-numbers.large-ring-of-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
The sum operation¶ extends the addition operation on real numbers to any finite sequence of real numbers.
Definition
sum-fin-sequence-ℝ : {l : Level} (n : ℕ) → fin-sequence (ℝ l) n → ℝ l sum-fin-sequence-ℝ {l} = sum-fin-sequence-type-Ab (ab-add-ℝ l)
Properties
Permutations preserve sums
abstract preserves-sum-permutation-fin-sequence-ℝ : {l : Level} (n : ℕ) (σ : Permutation n) (a : fin-sequence (ℝ l) n) → sum-fin-sequence-ℝ n a = sum-fin-sequence-ℝ n (a ∘ map-equiv σ) preserves-sum-permutation-fin-sequence-ℝ {l} = preserves-sum-permutation-fin-sequence-type-Ab (ab-add-ℝ l)
Constant sums are multiples
abstract sum-constant-fin-sequence-ℝ : {l : Level} (n : ℕ) (c : ℝ l) → sum-fin-sequence-ℝ n (λ _ → c) = real-ℕ n *ℝ c sum-constant-fin-sequence-ℝ {l} n c = ( sum-constant-fin-sequence-type-Ab (ab-add-ℝ l) n c) ∙ ( inv (left-mul-real-ℕ n c))
If aᵢ ≤ bᵢ for all i, then the sum of the aᵢ is less than or equal to the sum of the bᵢ
abstract preserves-leq-sum-fin-sequence-ℝ : {l1 l2 : Level} (n : ℕ) (a : fin-sequence (ℝ l1) n) (b : fin-sequence (ℝ l2) n) → ((i : Fin n) → leq-ℝ (a i) (b i)) → leq-ℝ (sum-fin-sequence-ℝ n a) (sum-fin-sequence-ℝ n b) preserves-leq-sum-fin-sequence-ℝ {l1} {l2} 0 _ _ _ = leq-sim-ℝ (sim-raise-raise-ℝ l1 l2 zero-ℝ) preserves-leq-sum-fin-sequence-ℝ (succ-ℕ n) a b aᵢ≤bᵢ = preserves-leq-add-ℝ ( preserves-leq-sum-fin-sequence-ℝ ( n) ( a ∘ inl-Fin n) ( b ∘ inl-Fin n) ( aᵢ≤bᵢ ∘ inl-Fin n)) ( aᵢ≤bᵢ (neg-one-Fin n))
Homotopic finite sequences have the same sums
abstract htpy-sum-fin-sequence-ℝ : {l : Level} (n : ℕ) {a b : fin-sequence (ℝ l) n} → a ~ b → sum-fin-sequence-ℝ n a = sum-fin-sequence-ℝ n b htpy-sum-fin-sequence-ℝ {l} = htpy-sum-fin-sequence-type-Ab (ab-add-ℝ l)
∑ aₙ + ∑ bₙ = ∑ (aₙ + bₙ)
abstract interchange-add-sum-fin-sequence-ℝ : {l : Level} (n : ℕ) (a b : fin-sequence (ℝ l) n) → sum-fin-sequence-ℝ n a +ℝ sum-fin-sequence-ℝ n b = sum-fin-sequence-ℝ n (λ i → a i +ℝ b i) interchange-add-sum-fin-sequence-ℝ {l} = interchange-add-sum-fin-sequence-type-Commutative-Ring ( commutative-ring-ℝ l)
Multiplication distributes over sums
abstract left-distributive-mul-sum-fin-sequence-ℝ : {l : Level} (n : ℕ) (x : ℝ l) (f : fin-sequence (ℝ l) n) → x *ℝ sum-fin-sequence-ℝ n f = sum-fin-sequence-ℝ n (λ i → x *ℝ f i) left-distributive-mul-sum-fin-sequence-ℝ {l} = left-distributive-mul-sum-fin-sequence-type-Commutative-Ring ( commutative-ring-ℝ l) right-distributive-mul-sum-fin-sequence-ℝ : {l : Level} (n : ℕ) (f : fin-sequence (ℝ l) n) (x : ℝ l) → sum-fin-sequence-ℝ n f *ℝ x = sum-fin-sequence-ℝ n (λ i → f i *ℝ x) right-distributive-mul-sum-fin-sequence-ℝ {l} = right-distributive-mul-sum-fin-sequence-type-Commutative-Ring ( commutative-ring-ℝ l)
Sums of zeroes are zero
abstract sum-zero-fin-sequence-ℝ : {l : Level} (n : ℕ) → sum-fin-sequence-ℝ n (λ _ → raise-zero-ℝ l) = raise-zero-ℝ l sum-zero-fin-sequence-ℝ {l} = sum-zero-fin-sequence-type-Commutative-Ring ( commutative-ring-ℝ l)
If aₙ ≤ bₙ for all n, then ∑ aₙ ≤ ∑ bₙ
abstract leq-sum-fin-sequence-ℝ : {l1 l2 : Level} (n : ℕ) → (a : fin-sequence (ℝ l1) n) (b : fin-sequence (ℝ l2) n) → ((k : Fin n) → leq-ℝ (a k) (b k)) → leq-ℝ (sum-fin-sequence-ℝ n a) (sum-fin-sequence-ℝ n b) leq-sum-fin-sequence-ℝ {l1} {l2} 0 _ _ _ = leq-sim-ℝ ( transitive-sim-ℝ _ _ _ (sim-raise-ℝ l2 zero-ℝ) (sim-raise-ℝ' l1 zero-ℝ)) leq-sum-fin-sequence-ℝ (succ-ℕ n) a b H = preserves-leq-add-ℝ ( leq-sum-fin-sequence-ℝ ( n) ( a ∘ inl-Fin n) ( b ∘ inl-Fin n) ( H ∘ inl-Fin n)) ( H (neg-one-Fin n))
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).