Nontrivial rings
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Fernando Chu.
Created on 2022-03-21.
Last modified on 2025-10-31.
module ring-theory.nontrivial-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.universe-levels open import ring-theory.invertible-elements-rings open import ring-theory.rings open import ring-theory.trivial-rings
Idea
Nontrivial rings¶ are
rings in which 0 ≠ 1.
Definition
is-nontrivial-ring-Prop : {l : Level} → Ring l → Prop l is-nontrivial-ring-Prop R = neg-Prop (is-trivial-ring-Prop R) is-nontrivial-Ring : {l : Level} → Ring l → UU l is-nontrivial-Ring R = type-Prop (is-nontrivial-ring-Prop R) is-prop-is-nontrivial-Ring : {l : Level} (R : Ring l) → is-prop (is-nontrivial-Ring R) is-prop-is-nontrivial-Ring R = is-prop-type-Prop (is-nontrivial-ring-Prop R)
Properties
Invertible elements of nontrivial rings are not equal to zero
module _ {l : Level} (R : Ring l) (H : is-nontrivial-Ring R) (x : type-Ring R) where is-nonzero-is-invertible-element-nontrivial-Ring : is-invertible-element-Ring R x → zero-Ring R ≠ x is-nonzero-is-invertible-element-nontrivial-Ring (y , P , _) K = H ( ( inv (left-zero-law-mul-Ring R y)) ∙ ( ap (mul-Ring' R y) K) ∙ ( P))
Recent changes
- 2025-10-31. Fredrik Bakke. chore: Concepts in
ring-theory(#1655). - 2023-03-27. Fernando Chu. Change integral domains definition (#545).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).