Operations on spans
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-04-25.
module foundation-core.operations-spans where
Imports
open import foundation.dependent-pair-types open import foundation.morphisms-arrows open import foundation.spans open import foundation.universe-levels open import foundation-core.function-types
Idea
This file contains some operations on spans that produce new spans from given spans and possibly other data.
Definitions
Concatenating spans and maps on both sides
Consider a span s
given by
f g
A <----- S -----> B
and maps i : A → A'
and j : B → B'
. The
concatenation span¶ of i
,
s
, and j
is the span
i ∘ f j ∘ g
A' <------- S -------> B.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {A' : UU l2} {B : UU l3} {B' : UU l4} where concat-span : span l5 A B → (A → A') → (B → B') → span l5 A' B' pr1 (concat-span s i j) = spanning-type-span s pr1 (pr2 (concat-span s i j)) = i ∘ left-map-span s pr2 (pr2 (concat-span s i j)) = j ∘ right-map-span s
Concatenating spans and maps on the left
Consider a span s
given by
f g
A <----- S -----> B
and a map i : A → A'
. The
left concatenation¶ of
s
by i
is the span
i ∘ f g
A' <------- S -----> B.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {A' : UU l2} {B : UU l3} where left-concat-span : span l4 A B → (A → A') → span l4 A' B left-concat-span s f = concat-span s f id
Concatenating spans and maps on the right
Consider a span s
given by
f g
A <----- S -----> B
and a map j : B → B'
. The
right concatenation¶
of s
by j
is the span
f j ∘ g
A' <----- S -------> B.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l3} {B' : UU l4} where right-concat-span : span l4 A B → (B → B') → span l4 A B' right-concat-span s g = concat-span s id g
Concatenating spans and morphisms of arrows on the left
Consider a span s
given by
f g
A <----- S -----> B
and a morphism of arrows h : hom-arrow f' f
as indicated in the diagram
f'
A' <---- S'
| |
h₀ | | h₁
∨ ∨
A <----- S -----> B.
f g
Then we obtain a span A' <- S' -> B
.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} (s : span l3 A B) {S' : UU l4} {A' : UU l5} (f' : S' → A') (h : hom-arrow f' (left-map-span s)) where spanning-type-left-concat-hom-arrow-span : UU l4 spanning-type-left-concat-hom-arrow-span = S' left-map-left-concat-hom-arrow-span : spanning-type-left-concat-hom-arrow-span → A' left-map-left-concat-hom-arrow-span = f' right-map-left-concat-hom-arrow-span : spanning-type-left-concat-hom-arrow-span → B right-map-left-concat-hom-arrow-span = right-map-span s ∘ map-domain-hom-arrow f' (left-map-span s) h left-concat-hom-arrow-span : span l4 A' B pr1 left-concat-hom-arrow-span = spanning-type-left-concat-hom-arrow-span pr1 (pr2 left-concat-hom-arrow-span) = left-map-left-concat-hom-arrow-span pr2 (pr2 left-concat-hom-arrow-span) = right-map-left-concat-hom-arrow-span
Concatenating spans and morphisms of arrows on the right
Consider a span s
given by
f g
A <----- S -----> B
and a morphism of arrows h : hom-arrow g' g
as indicated in the diagram
g'
S' ----> B'
| |
h₀ | | h₁
∨ ∨
A <----- S -----> B.
f g
Then we obtain a span A <- S' -> B'
.
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} (s : span l3 A B) {S' : UU l4} {B' : UU l5} (g' : S' → B') (h : hom-arrow g' (right-map-span s)) where spanning-type-right-concat-hom-arrow-span : UU l4 spanning-type-right-concat-hom-arrow-span = S' left-map-right-concat-hom-arrow-span : spanning-type-right-concat-hom-arrow-span → A left-map-right-concat-hom-arrow-span = left-map-span s ∘ map-domain-hom-arrow g' (right-map-span s) h right-map-right-concat-hom-arrow-span : spanning-type-right-concat-hom-arrow-span → B' right-map-right-concat-hom-arrow-span = g' right-concat-hom-arrow-span : span l4 A B' pr1 right-concat-hom-arrow-span = spanning-type-right-concat-hom-arrow-span pr1 (pr2 right-concat-hom-arrow-span) = left-map-right-concat-hom-arrow-span pr2 (pr2 right-concat-hom-arrow-span) = right-map-right-concat-hom-arrow-span
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).