Invertible elements in monoids

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Gregor Perčič.

Created on 2022-03-17.
Last modified on 2024-02-06.

module group-theory.invertible-elements-monoids where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels

open import group-theory.monoids

Idea

An element x : M in a monoid M is said to be left invertible if there is an element y : M such that yx = e, and it is said to be right invertible if there is an element y : M such that xy = e. The element x is said to be invertible if it has a two-sided inverse, i.e., if if there is an element y : M such that xy = e and yx = e. Left inverses of elements are also called retractions and right inverses are also called sections.

Definitions

Right invertible elements

module _
  {l : Level} (M : Monoid l) (x : type-Monoid M)
  where

  is-right-inverse-element-Monoid : type-Monoid M  UU l
  is-right-inverse-element-Monoid y = mul-Monoid M x y  unit-Monoid M

  is-right-invertible-element-Monoid : UU l
  is-right-invertible-element-Monoid =
    Σ (type-Monoid M) is-right-inverse-element-Monoid

module _
  {l : Level} (M : Monoid l) {x : type-Monoid M}
  where

  section-is-right-invertible-element-Monoid :
    is-right-invertible-element-Monoid M x  type-Monoid M
  section-is-right-invertible-element-Monoid = pr1

  is-right-inverse-section-is-right-invertible-element-Monoid :
    (H : is-right-invertible-element-Monoid M x) 
    is-right-inverse-element-Monoid M x
      ( section-is-right-invertible-element-Monoid H)
  is-right-inverse-section-is-right-invertible-element-Monoid = pr2

Left invertible elements

module _
  {l : Level} (M : Monoid l) (x : type-Monoid M)
  where

  is-left-inverse-element-Monoid : type-Monoid M  UU l
  is-left-inverse-element-Monoid y = mul-Monoid M y x  unit-Monoid M

  is-left-invertible-element-Monoid : UU l
  is-left-invertible-element-Monoid =
    Σ (type-Monoid M) is-left-inverse-element-Monoid

module _
  {l : Level} (M : Monoid l) {x : type-Monoid M}
  where

  retraction-is-left-invertible-element-Monoid :
    is-left-invertible-element-Monoid M x  type-Monoid M
  retraction-is-left-invertible-element-Monoid = pr1

  is-left-inverse-retraction-is-left-invertible-element-Monoid :
    (H : is-left-invertible-element-Monoid M x) 
    is-left-inverse-element-Monoid M x
      ( retraction-is-left-invertible-element-Monoid H)
  is-left-inverse-retraction-is-left-invertible-element-Monoid = pr2

Invertible elements

module _
  {l : Level} (M : Monoid l) (x : type-Monoid M)
  where

  is-inverse-element-Monoid : type-Monoid M  UU l
  is-inverse-element-Monoid y =
    is-right-inverse-element-Monoid M x y ×
    is-left-inverse-element-Monoid M x y

  is-invertible-element-Monoid : UU l
  is-invertible-element-Monoid =
    Σ (type-Monoid M) is-inverse-element-Monoid

module _
  {l : Level} (M : Monoid l) {x : type-Monoid M}
  where

  inv-is-invertible-element-Monoid :
    is-invertible-element-Monoid M x  type-Monoid M
  inv-is-invertible-element-Monoid = pr1

  is-right-inverse-inv-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    is-right-inverse-element-Monoid M x (inv-is-invertible-element-Monoid H)
  is-right-inverse-inv-is-invertible-element-Monoid H = pr1 (pr2 H)

  is-left-inverse-inv-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    is-left-inverse-element-Monoid M x (inv-is-invertible-element-Monoid H)
  is-left-inverse-inv-is-invertible-element-Monoid H = pr2 (pr2 H)

Properties

Being an invertible element is a property

module _
  {l : Level} (M : Monoid l)
  where

  all-elements-equal-is-invertible-element-Monoid :
    (x : type-Monoid M)  all-elements-equal (is-invertible-element-Monoid M x)
  all-elements-equal-is-invertible-element-Monoid x (y , p , q) (y' , p' , q') =
    eq-type-subtype
      ( λ z 
        product-Prop
          ( Id-Prop (set-Monoid M) (mul-Monoid M x z) (unit-Monoid M))
          ( Id-Prop (set-Monoid M) (mul-Monoid M z x) (unit-Monoid M)))
      ( ( inv (left-unit-law-mul-Monoid M y)) 
        ( inv (ap  z  mul-Monoid M z y) q')) 
        ( associative-mul-Monoid M y' x y) 
        ( ap (mul-Monoid M y') p) 
        ( right-unit-law-mul-Monoid M y'))

  is-prop-is-invertible-element-Monoid :
    (x : type-Monoid M)  is-prop (is-invertible-element-Monoid M x)
  is-prop-is-invertible-element-Monoid x =
    is-prop-all-elements-equal
      ( all-elements-equal-is-invertible-element-Monoid x)

  is-invertible-element-prop-Monoid : type-Monoid M  Prop l
  pr1 (is-invertible-element-prop-Monoid x) =
    is-invertible-element-Monoid M x
  pr2 (is-invertible-element-prop-Monoid x) =
    is-prop-is-invertible-element-Monoid x

Inverses are left/right inverses

module _
  {l : Level} (M : Monoid l)
  where

  is-left-invertible-is-invertible-element-Monoid :
    (x : type-Monoid M) 
    is-invertible-element-Monoid M x  is-left-invertible-element-Monoid M x
  pr1 (is-left-invertible-is-invertible-element-Monoid x is-invertible-x) =
    pr1 is-invertible-x
  pr2 (is-left-invertible-is-invertible-element-Monoid x is-invertible-x) =
    pr2 (pr2 is-invertible-x)

  is-right-invertible-is-invertible-element-Monoid :
    (x : type-Monoid M) 
    is-invertible-element-Monoid M x  is-right-invertible-element-Monoid M x
  pr1 (is-right-invertible-is-invertible-element-Monoid x is-invertible-x) =
    pr1 is-invertible-x
  pr2 (is-right-invertible-is-invertible-element-Monoid x is-invertible-x) =
    pr1 (pr2 is-invertible-x)

The inverse invertible element

module _
  {l : Level} (M : Monoid l)
  where

  is-right-invertible-left-inverse-Monoid :
    (x : type-Monoid M) (lx : is-left-invertible-element-Monoid M x) 
    is-right-invertible-element-Monoid M (pr1 lx)
  pr1 (is-right-invertible-left-inverse-Monoid x lx) = x
  pr2 (is-right-invertible-left-inverse-Monoid x lx) = pr2 lx

  is-left-invertible-right-inverse-Monoid :
    (x : type-Monoid M) (rx : is-right-invertible-element-Monoid M x) 
    is-left-invertible-element-Monoid M (pr1 rx)
  pr1 (is-left-invertible-right-inverse-Monoid x rx) = x
  pr2 (is-left-invertible-right-inverse-Monoid x rx) = pr2 rx

  is-invertible-element-inverse-Monoid :
    (x : type-Monoid M) (x' : is-invertible-element-Monoid M x) 
    is-invertible-element-Monoid M (pr1 x')
  pr1 (is-invertible-element-inverse-Monoid x x') = x
  pr1 (pr2 (is-invertible-element-inverse-Monoid x x')) = pr2 (pr2 x')
  pr2 (pr2 (is-invertible-element-inverse-Monoid x x')) = pr1 (pr2 x')

Any invertible element of a monoid has a contractible type of right inverses

module _
  {l : Level} (M : Monoid l)
  where

  is-contr-is-right-invertible-element-Monoid :
    (x : type-Monoid M)  is-invertible-element-Monoid M x 
    is-contr (is-right-invertible-element-Monoid M x)
  pr1 (pr1 (is-contr-is-right-invertible-element-Monoid x (y , p , q))) = y
  pr2 (pr1 (is-contr-is-right-invertible-element-Monoid x (y , p , q))) = p
  pr2 (is-contr-is-right-invertible-element-Monoid x (y , p , q)) (y' , q') =
    eq-type-subtype
      ( λ u  Id-Prop (set-Monoid M) (mul-Monoid M x u) (unit-Monoid M))
      ( ( inv (right-unit-law-mul-Monoid M y)) 
        ( ap (mul-Monoid M y) (inv q')) 
        ( inv (associative-mul-Monoid M y x y')) 
        ( ap (mul-Monoid' M y') q) 
        ( left-unit-law-mul-Monoid M y'))

Any invertible element of a monoid has a contractible type of left inverses

module _
  {l : Level} (M : Monoid l)
  where

  is-contr-is-left-invertible-Monoid :
    (x : type-Monoid M)  is-invertible-element-Monoid M x 
    is-contr (is-left-invertible-element-Monoid M x)
  pr1 (pr1 (is-contr-is-left-invertible-Monoid x (y , p , q))) = y
  pr2 (pr1 (is-contr-is-left-invertible-Monoid x (y , p , q))) = q
  pr2 (is-contr-is-left-invertible-Monoid x (y , p , q)) (y' , p') =
    eq-type-subtype
      ( λ u  Id-Prop (set-Monoid M) (mul-Monoid M u x) (unit-Monoid M))
      ( ( inv (left-unit-law-mul-Monoid M y)) 
        ( ap (mul-Monoid' M y) (inv p')) 
        ( associative-mul-Monoid M y' x y) 
        ( ap (mul-Monoid M y') p) 
        ( right-unit-law-mul-Monoid M y'))

The unit of a monoid is invertible

module _
  {l : Level} (M : Monoid l)
  where

  is-left-invertible-element-unit-Monoid :
    is-left-invertible-element-Monoid M (unit-Monoid M)
  pr1 is-left-invertible-element-unit-Monoid = unit-Monoid M
  pr2 is-left-invertible-element-unit-Monoid =
    left-unit-law-mul-Monoid M (unit-Monoid M)

  is-right-invertible-element-unit-Monoid :
    is-right-invertible-element-Monoid M (unit-Monoid M)
  pr1 is-right-invertible-element-unit-Monoid = unit-Monoid M
  pr2 is-right-invertible-element-unit-Monoid =
    left-unit-law-mul-Monoid M (unit-Monoid M)

  is-invertible-element-unit-Monoid :
    is-invertible-element-Monoid M (unit-Monoid M)
  pr1 is-invertible-element-unit-Monoid =
    unit-Monoid M
  pr1 (pr2 is-invertible-element-unit-Monoid) =
    left-unit-law-mul-Monoid M (unit-Monoid M)
  pr2 (pr2 is-invertible-element-unit-Monoid) =
    left-unit-law-mul-Monoid M (unit-Monoid M)

Invertible elements are closed under multiplication

module _
  {l : Level} (M : Monoid l)
  where

  is-left-invertible-element-mul-Monoid :
    (x y : type-Monoid M) 
    is-left-invertible-element-Monoid M x 
    is-left-invertible-element-Monoid M y 
    is-left-invertible-element-Monoid M (mul-Monoid M x y)
  pr1 (is-left-invertible-element-mul-Monoid x y (lx , H) (ly , I)) =
    mul-Monoid M ly lx
  pr2 (is-left-invertible-element-mul-Monoid x y (lx , H) (ly , I)) =
    ( associative-mul-Monoid M ly lx (mul-Monoid M x y)) 
    ( ap
      ( mul-Monoid M ly)
      ( ( inv (associative-mul-Monoid M lx x y)) 
        ( ap  z  mul-Monoid M z y) H) 
        ( left-unit-law-mul-Monoid M y))) 
    ( I)

  is-right-invertible-element-mul-Monoid :
    (x y : type-Monoid M) 
    is-right-invertible-element-Monoid M x 
    is-right-invertible-element-Monoid M y 
    is-right-invertible-element-Monoid M (mul-Monoid M x y)
  pr1 (is-right-invertible-element-mul-Monoid x y (rx , H) (ry , I)) =
    mul-Monoid M ry rx
  pr2 (is-right-invertible-element-mul-Monoid x y (rx , H) (ry , I)) =
    ( associative-mul-Monoid M x y (mul-Monoid M ry rx)) 
    ( ap
      ( mul-Monoid M x)
      ( ( inv (associative-mul-Monoid M y ry rx)) 
        ( ap  z  mul-Monoid M z rx) I) 
        ( left-unit-law-mul-Monoid M rx))) 
    ( H)

  is-invertible-element-mul-Monoid :
    (x y : type-Monoid M) 
    is-invertible-element-Monoid M x 
    is-invertible-element-Monoid M y 
    is-invertible-element-Monoid M (mul-Monoid M x y)
  pr1 (is-invertible-element-mul-Monoid x y (x' , Lx , Rx) (y' , Ly , Ry)) =
    mul-Monoid M y' x'
  pr1 (pr2 (is-invertible-element-mul-Monoid x y H K)) =
    pr2
      ( is-right-invertible-element-mul-Monoid x y
        ( is-right-invertible-is-invertible-element-Monoid M x H)
        ( is-right-invertible-is-invertible-element-Monoid M y K))
  pr2 (pr2 (is-invertible-element-mul-Monoid x y H K)) =
    pr2
      ( is-left-invertible-element-mul-Monoid x y
        ( is-left-invertible-is-invertible-element-Monoid M x H)
        ( is-left-invertible-is-invertible-element-Monoid M y K))

The inverse of an invertible element is invertible

module _
  {l : Level} (M : Monoid l)
  where

  is-invertible-element-inv-is-invertible-element-Monoid :
    {x : type-Monoid M} (H : is-invertible-element-Monoid M x) 
    is-invertible-element-Monoid M (inv-is-invertible-element-Monoid M H)
  pr1 (is-invertible-element-inv-is-invertible-element-Monoid {x} H) = x
  pr1 (pr2 (is-invertible-element-inv-is-invertible-element-Monoid H)) =
    is-left-inverse-inv-is-invertible-element-Monoid M H
  pr2 (pr2 (is-invertible-element-inv-is-invertible-element-Monoid H)) =
    is-right-inverse-inv-is-invertible-element-Monoid M H

An element is invertible if and only if multiplying by it is an equivalence

Proof: Suppose that the map z ↦ xz is an equivalence. Then there is a unique element y such that xy = 1. Thus we have a right inverse of x. To see that y is also a left inverse of x, note that the map z ↦ xz is injective by the assumption that it is an equivalence. Therefore it suffices to show that x(yx) = x1. This follows from the following calculation:

  x(yx) = (xy)x = 1x = x = x1.

This completes the proof that if z ↦ xz is an equivalence, then x is invertible. The converse is straightfoward.

In the following code we give the above proof, as well as the analogous proof that x is invertible if z ↦ zx is an equivalence, and the converse of both statements.

An element x is invertible if and only if z ↦ xz is an equivalence

module _
  {l : Level} (M : Monoid l) {x : type-Monoid M}
  where

  inv-is-invertible-element-is-equiv-mul-Monoid :
    is-equiv (mul-Monoid M x)  type-Monoid M
  inv-is-invertible-element-is-equiv-mul-Monoid H =
    map-inv-is-equiv H (unit-Monoid M)

  is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid :
    (H : is-equiv (mul-Monoid M x)) 
    mul-Monoid M x (inv-is-invertible-element-is-equiv-mul-Monoid H) 
    unit-Monoid M
  is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid H =
    is-section-map-inv-is-equiv H (unit-Monoid M)

  is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid :
    (H : is-equiv (mul-Monoid M x)) 
    mul-Monoid M (inv-is-invertible-element-is-equiv-mul-Monoid H) x 
    unit-Monoid M
  is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid H =
    is-injective-is-equiv H
      ( ( inv (associative-mul-Monoid M _ _ _)) 
        ( ap
          ( mul-Monoid' M x)
          ( is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid H)) 
        ( left-unit-law-mul-Monoid M x) 
        ( inv (right-unit-law-mul-Monoid M x)))

  is-invertible-element-is-equiv-mul-Monoid :
    is-equiv (mul-Monoid M x)  is-invertible-element-Monoid M x
  pr1 (is-invertible-element-is-equiv-mul-Monoid H) =
    inv-is-invertible-element-is-equiv-mul-Monoid H
  pr1 (pr2 (is-invertible-element-is-equiv-mul-Monoid H)) =
    is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid H
  pr2 (pr2 (is-invertible-element-is-equiv-mul-Monoid H)) =
    is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid H

  left-div-is-invertible-element-Monoid :
    is-invertible-element-Monoid M x  type-Monoid M  type-Monoid M
  left-div-is-invertible-element-Monoid H =
    mul-Monoid M (inv-is-invertible-element-Monoid M H)

  is-section-left-div-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    mul-Monoid M x  left-div-is-invertible-element-Monoid H ~ id
  is-section-left-div-is-invertible-element-Monoid H y =
    ( inv (associative-mul-Monoid M _ _ _)) 
    ( ap
      ( mul-Monoid' M y)
      ( is-right-inverse-inv-is-invertible-element-Monoid M H)) 
    ( left-unit-law-mul-Monoid M y)

  is-retraction-left-div-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    left-div-is-invertible-element-Monoid H  mul-Monoid M x ~ id
  is-retraction-left-div-is-invertible-element-Monoid H y =
    ( inv (associative-mul-Monoid M _ _ _)) 
    ( ap
      ( mul-Monoid' M y)
      ( is-left-inverse-inv-is-invertible-element-Monoid M H)) 
    ( left-unit-law-mul-Monoid M y)

  is-equiv-mul-is-invertible-element-Monoid :
    is-invertible-element-Monoid M x  is-equiv (mul-Monoid M x)
  is-equiv-mul-is-invertible-element-Monoid H =
    is-equiv-is-invertible
      ( left-div-is-invertible-element-Monoid H)
      ( is-section-left-div-is-invertible-element-Monoid H)
      ( is-retraction-left-div-is-invertible-element-Monoid H)

An element x is invertible if and only if z ↦ zx is an equivalence

module _
  {l : Level} (M : Monoid l) {x : type-Monoid M}
  where

  inv-is-invertible-element-is-equiv-mul-Monoid' :
    is-equiv (mul-Monoid' M x)  type-Monoid M
  inv-is-invertible-element-is-equiv-mul-Monoid' H =
    map-inv-is-equiv H (unit-Monoid M)

  is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' :
    (H : is-equiv (mul-Monoid' M x)) 
    mul-Monoid M (inv-is-invertible-element-is-equiv-mul-Monoid' H) x 
    unit-Monoid M
  is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' H =
    is-section-map-inv-is-equiv H (unit-Monoid M)

  is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' :
    (H : is-equiv (mul-Monoid' M x)) 
    mul-Monoid M x (inv-is-invertible-element-is-equiv-mul-Monoid' H) 
    unit-Monoid M
  is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' H =
    is-injective-is-equiv H
      ( ( associative-mul-Monoid M _ _ _) 
        ( ap
          ( mul-Monoid M x)
          ( is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' H)) 
        ( right-unit-law-mul-Monoid M x) 
        ( inv (left-unit-law-mul-Monoid M x)))

  is-invertible-element-is-equiv-mul-Monoid' :
    is-equiv (mul-Monoid' M x)  is-invertible-element-Monoid M x
  pr1 (is-invertible-element-is-equiv-mul-Monoid' H) =
    inv-is-invertible-element-is-equiv-mul-Monoid' H
  pr1 (pr2 (is-invertible-element-is-equiv-mul-Monoid' H)) =
    is-right-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' H
  pr2 (pr2 (is-invertible-element-is-equiv-mul-Monoid' H)) =
    is-left-inverse-inv-is-invertible-element-is-equiv-mul-Monoid' H

  right-div-is-invertible-element-Monoid :
    is-invertible-element-Monoid M x  type-Monoid M  type-Monoid M
  right-div-is-invertible-element-Monoid H =
    mul-Monoid' M (inv-is-invertible-element-Monoid M H)

  is-section-right-div-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    mul-Monoid' M x  right-div-is-invertible-element-Monoid H ~ id
  is-section-right-div-is-invertible-element-Monoid H y =
    ( associative-mul-Monoid M _ _ _) 
    ( ap
      ( mul-Monoid M y)
      ( is-left-inverse-inv-is-invertible-element-Monoid M H)) 
    ( right-unit-law-mul-Monoid M y)

  is-retraction-right-div-is-invertible-element-Monoid :
    (H : is-invertible-element-Monoid M x) 
    right-div-is-invertible-element-Monoid H  mul-Monoid' M x ~ id
  is-retraction-right-div-is-invertible-element-Monoid H y =
    ( associative-mul-Monoid M _ _ _) 
    ( ap
      ( mul-Monoid M y)
      ( is-right-inverse-inv-is-invertible-element-Monoid M H)) 
    ( right-unit-law-mul-Monoid M y)

  is-equiv-mul-is-invertible-element-Monoid' :
    is-invertible-element-Monoid M x  is-equiv (mul-Monoid' M x)
  is-equiv-mul-is-invertible-element-Monoid' H =
    is-equiv-is-invertible
      ( right-div-is-invertible-element-Monoid H)
      ( is-section-right-div-is-invertible-element-Monoid H)
      ( is-retraction-right-div-is-invertible-element-Monoid H)

See also

Recent changes