Powers of elements in commutative semirings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.
Created on 2023-02-20.
Last modified on 2023-08-21.
module commutative-algebra.powers-of-elements-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import ring-theory.powers-of-elements-semirings
Idea
The power operation on a commutative semiring is the map n x ↦ xⁿ
, which
is defined by iteratively multiplying x
with itself n
times.
Definition
power-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) → ℕ → type-Commutative-Semiring A → type-Commutative-Semiring A power-Commutative-Semiring A = power-Semiring (semiring-Commutative-Semiring A)
Properties
xⁿ⁺¹ = xⁿx
module _ {l : Level} (A : Commutative-Semiring l) where power-succ-Commutative-Semiring : (n : ℕ) (x : type-Commutative-Semiring A) → power-Commutative-Semiring A (succ-ℕ n) x = mul-Commutative-Semiring A (power-Commutative-Semiring A n x) x power-succ-Commutative-Semiring = power-succ-Semiring (semiring-Commutative-Semiring A)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (A : Commutative-Semiring l) where distributive-power-add-Commutative-Semiring : (m n : ℕ) {x : type-Commutative-Semiring A} → power-Commutative-Semiring A (m +ℕ n) x = mul-Commutative-Semiring A ( power-Commutative-Semiring A m x) ( power-Commutative-Semiring A n x) distributive-power-add-Commutative-Semiring = distributive-power-add-Semiring (semiring-Commutative-Semiring A)
If x
commutes with y
, then powers distribute over the product of x
and y
module _ {l : Level} (A : Commutative-Semiring l) where distributive-power-mul-Commutative-Semiring : (n : ℕ) (x y : type-Commutative-Semiring A) → power-Commutative-Semiring A n (mul-Commutative-Semiring A x y) = mul-Commutative-Semiring A ( power-Commutative-Semiring A n x) ( power-Commutative-Semiring A n y) distributive-power-mul-Commutative-Semiring n x y = distributive-power-mul-Semiring ( semiring-Commutative-Semiring A) ( n) ( commutative-mul-Commutative-Semiring A x y)
Recent changes
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).