Decidable embeddings

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Victor Blanchi.

Created on 2022-02-10.
Last modified on 2025-01-07.

module foundation.decidable-embeddings where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-morphisms-arrows
open import foundation.decidable-maps
open import foundation.decidable-propositions
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.fibers-of-maps
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-coproduct-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositional-maps
open import foundation.propositions
open import foundation.retracts-of-maps
open import foundation.subtype-identity-principle
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unit-type
open import foundation.universal-property-equivalences
open import foundation.universe-levels

open import foundation-core.cartesian-product-types
open import foundation-core.coproduct-types
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.injective-maps
open import foundation-core.torsorial-type-families

Idea

A map is said to be a decidable embedding if it is an embedding and its fibers are decidable types.

Equivalently, a decidable embedding is a map whose fibers are decidable propositions. We refer to this condition as being a decidably propositional map.

Definitions

The condition on a map of being a decidable embedding

is-decidable-emb :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2}  (X  Y)  UU (l1  l2)
is-decidable-emb f = is-emb f × is-decidable-map f

is-emb-is-decidable-emb :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} {f : X  Y} 
  is-decidable-emb f  is-emb f
is-emb-is-decidable-emb = pr1

is-decidable-map-is-decidable-emb :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} {f : X  Y} 
  is-decidable-emb f  is-decidable-map f
is-decidable-map-is-decidable-emb = pr2

is-injective-is-decidable-emb :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} {f : X  Y} 
  is-decidable-emb f  is-injective f
is-injective-is-decidable-emb = is-injective-is-emb  is-emb-is-decidable-emb

Decidably propositional maps

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2}
  where

  is-decidable-prop-map : (X  Y)  UU (l1  l2)
  is-decidable-prop-map f = (y : Y)  is-decidable-prop (fiber f y)

  is-prop-is-decidable-prop-map :
    (f : X  Y)  is-prop (is-decidable-prop-map f)
  is-prop-is-decidable-prop-map f =
    is-prop-Π  y  is-prop-is-decidable-prop (fiber f y))

  is-decidable-prop-map-Prop : (X  Y)  Prop (l1  l2)
  is-decidable-prop-map-Prop f =
    ( is-decidable-prop-map f , is-prop-is-decidable-prop-map f)

  abstract
    is-prop-map-is-decidable-prop-map :
      {f : X  Y}  is-decidable-prop-map f  is-prop-map f
    is-prop-map-is-decidable-prop-map H y = pr1 (H y)

  is-decidable-map-is-decidable-prop-map :
    {f : X  Y}  is-decidable-prop-map f  is-decidable-map f
  is-decidable-map-is-decidable-prop-map H y = pr2 (H y)

The type of decidable embeddings

infix 5 _↪ᵈ_
_↪ᵈ_ : {l1 l2 : Level} (X : UU l1) (Y : UU l2)  UU (l1  l2)
X ↪ᵈ Y = Σ (X  Y) is-decidable-emb

decidable-emb : {l1 l2 : Level} (X : UU l1) (Y : UU l2)  UU (l1  l2)
decidable-emb = _↪ᵈ_

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ↪ᵈ Y)
  where

  map-decidable-emb : X  Y
  map-decidable-emb = pr1 e

  is-decidable-emb-map-decidable-emb :
    is-decidable-emb map-decidable-emb
  is-decidable-emb-map-decidable-emb = pr2 e

  is-emb-map-decidable-emb : is-emb map-decidable-emb
  is-emb-map-decidable-emb =
    is-emb-is-decidable-emb is-decidable-emb-map-decidable-emb

  is-decidable-map-map-decidable-emb :
    is-decidable-map map-decidable-emb
  is-decidable-map-map-decidable-emb =
    is-decidable-map-is-decidable-emb is-decidable-emb-map-decidable-emb

  emb-decidable-emb : X  Y
  emb-decidable-emb = map-decidable-emb , is-emb-map-decidable-emb

Properties

Any map of which the fibers are decidable propositions is a decidable embedding

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} {f : X  Y}
  where

  abstract
    is-decidable-emb-is-decidable-prop-map :
      is-decidable-prop-map f  is-decidable-emb f
    pr1 (is-decidable-emb-is-decidable-prop-map H) =
      is-emb-is-prop-map (is-prop-map-is-decidable-prop-map H)
    pr2 (is-decidable-emb-is-decidable-prop-map H) =
      is-decidable-map-is-decidable-prop-map H

  abstract
    is-prop-map-is-decidable-emb : is-decidable-emb f  is-prop-map f
    is-prop-map-is-decidable-emb H =
      is-prop-map-is-emb (is-emb-is-decidable-emb H)

  abstract
    is-decidable-prop-map-is-decidable-emb :
      is-decidable-emb f  is-decidable-prop-map f
    pr1 (is-decidable-prop-map-is-decidable-emb H y) =
      is-prop-map-is-decidable-emb H y
    pr2 (is-decidable-prop-map-is-decidable-emb H y) =
      is-decidable-map-is-decidable-emb H y

The first projection map of a dependent sum of decidable propositions is a decidable embedding

module _
  {l1 l2 : Level} {A : UU l1} (Q : A  Decidable-Prop l2)
  where

  is-decidable-prop-map-pr1 :
    is-decidable-prop-map (pr1 {B = type-Decidable-Prop  Q})
  is-decidable-prop-map-pr1 y =
    is-decidable-prop-equiv
      ( equiv-fiber-pr1 (type-Decidable-Prop  Q) y)
      ( is-decidable-prop-type-Decidable-Prop (Q y))

  is-decidable-emb-pr1 :
    is-decidable-emb (pr1 {B = type-Decidable-Prop  Q})
  is-decidable-emb-pr1 =
    is-decidable-emb-is-decidable-prop-map is-decidable-prop-map-pr1

Equivalences are decidable embeddings

abstract
  is-decidable-emb-is-equiv :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A  B} 
    is-equiv f  is-decidable-emb f
  is-decidable-emb-is-equiv H =
    ( is-emb-is-equiv H , is-decidable-map-is-equiv H)

Identity maps are decidable embeddings

is-decidable-emb-id :
  {l : Level} {A : UU l}  is-decidable-emb (id {A = A})
is-decidable-emb-id = (is-emb-id , is-decidable-map-id)

decidable-emb-id : {l : Level} {A : UU l}  A ↪ᵈ A
decidable-emb-id = (id , is-decidable-emb-id)

is-decidable-prop-map-id :
  {l : Level} {A : UU l}  is-decidable-prop-map (id {A = A})
is-decidable-prop-map-id y = is-decidable-prop-is-contr (is-torsorial-Id' y)

Being a decidable embedding is a property

abstract
  is-prop-is-decidable-emb :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) 
    is-prop (is-decidable-emb f)
  is-prop-is-decidable-emb f =
    is-prop-has-element
      ( λ H 
        is-prop-product
          ( is-property-is-emb f)
          ( is-prop-Π
            ( λ y  is-prop-is-decidable (is-prop-map-is-emb (pr1 H) y))))

Decidable embeddings are closed under homotopies

abstract
  is-decidable-emb-htpy :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B} 
    f ~ g  is-decidable-emb g  is-decidable-emb f
  is-decidable-emb-htpy {f = f} {g} H K =
    ( is-emb-htpy H (is-emb-is-decidable-emb K) ,
      is-decidable-map-htpy H (is-decidable-map-is-decidable-emb K))

Decidable embeddings are closed under composition

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  {g : B  C} {f : A  B}
  where

  abstract
    is-decidable-map-comp-is-decidable-emb' :
      is-decidable-emb g  is-decidable-map f  is-decidable-map (g  f)
    is-decidable-map-comp-is-decidable-emb' K =
      is-decidable-map-comp
        ( is-injective-is-decidable-emb K)
        ( is-decidable-map-is-decidable-emb K)

  is-decidable-map-comp-is-decidable-emb :
    is-decidable-emb g  is-decidable-emb f  is-decidable-map (g  f)
  is-decidable-map-comp-is-decidable-emb K H =
    is-decidable-map-comp-is-decidable-emb'
      ( K)
      ( is-decidable-map-is-decidable-emb H)

  is-decidable-emb-comp :
    is-decidable-emb g  is-decidable-emb f  is-decidable-emb (g  f)
  is-decidable-emb-comp K H =
    ( is-emb-comp _ _ (pr1 K) (pr1 H) ,
      is-decidable-map-comp-is-decidable-emb K H)

  abstract
    is-decidable-prop-map-comp :
      is-decidable-prop-map g 
      is-decidable-prop-map f 
      is-decidable-prop-map (g  f)
    is-decidable-prop-map-comp K H =
      is-decidable-prop-map-is-decidable-emb
        ( is-decidable-emb-comp
          ( is-decidable-emb-is-decidable-prop-map K)
          ( is-decidable-emb-is-decidable-prop-map H))

comp-decidable-emb :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} 
  B ↪ᵈ C  A ↪ᵈ B  A ↪ᵈ C
comp-decidable-emb (g , G) (f , F) =
  ( g  f , is-decidable-emb-comp G F)

infixr 15 _∘ᵈ_
_∘ᵈ_ :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} 
  B ↪ᵈ C  A ↪ᵈ B  A ↪ᵈ C
_∘ᵈ_ = comp-decidable-emb

Left cancellation for decidable embeddings

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A  B} {g : B  C}
  where

  is-decidable-emb-right-factor' :
      is-decidable-emb (g  f)  is-emb g  is-decidable-emb f
  is-decidable-emb-right-factor' GH G =
    ( is-emb-right-factor g f G (is-emb-is-decidable-emb GH) ,
      is-decidable-map-right-factor'
        ( is-decidable-map-is-decidable-emb GH)
        ( is-injective-is-emb G))

  is-decidable-emb-right-factor :
      is-decidable-emb (g  f)  is-decidable-emb g  is-decidable-emb f
  is-decidable-emb-right-factor GH G =
    is-decidable-emb-right-factor' GH (is-emb-is-decidable-emb G)

In a commuting triangle of maps, if the top and right maps are decidable embeddings so is the left map

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  {top : A  B} {left : A  C} {right : B  C}
  (H : left ~ right  top)
  where

  is-decidable-emb-left-map-triangle :
    is-decidable-emb top  is-decidable-emb right  is-decidable-emb left
  is-decidable-emb-left-map-triangle T R =
    is-decidable-emb-htpy H (is-decidable-emb-comp R T)

In a commuting triangle of maps, if the left and right maps are decidable embeddings so is the top map

In fact, the right map need only be an embedding.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  {top : A  B} {left : A  C} {right : B  C}
  (H : left ~ right  top)
  where

  is-decidable-emb-top-map-triangle' :
    is-emb right  is-decidable-emb left  is-decidable-emb top
  is-decidable-emb-top-map-triangle' R' L =
    is-decidable-emb-right-factor' (is-decidable-emb-htpy (inv-htpy H) L) R'

  is-decidable-emb-top-map-triangle :
    is-decidable-emb right  is-decidable-emb left  is-decidable-emb top
  is-decidable-emb-top-map-triangle R L =
    is-decidable-emb-right-factor (is-decidable-emb-htpy (inv-htpy H) L) R

Characterizing equality in the type of decidable embeddings

htpy-decidable-emb :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f g : A ↪ᵈ B)  UU (l1  l2)
htpy-decidable-emb f g = map-decidable-emb f ~ map-decidable-emb g

refl-htpy-decidable-emb :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↪ᵈ B)  htpy-decidable-emb f f
refl-htpy-decidable-emb f = refl-htpy

htpy-eq-decidable-emb :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f g : A ↪ᵈ B) 
  f  g  htpy-decidable-emb f g
htpy-eq-decidable-emb f .f refl = refl-htpy-decidable-emb f

abstract
  is-torsorial-htpy-decidable-emb :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A ↪ᵈ B) 
    is-torsorial (htpy-decidable-emb f)
  is-torsorial-htpy-decidable-emb f =
    is-torsorial-Eq-subtype
      ( is-torsorial-htpy (map-decidable-emb f))
      ( is-prop-is-decidable-emb)
      ( map-decidable-emb f)
      ( refl-htpy)
      ( is-decidable-emb-map-decidable-emb f)

abstract
  is-equiv-htpy-eq-decidable-emb :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} (f g : A ↪ᵈ B) 
    is-equiv (htpy-eq-decidable-emb f g)
  is-equiv-htpy-eq-decidable-emb f =
    fundamental-theorem-id
      ( is-torsorial-htpy-decidable-emb f)
      ( htpy-eq-decidable-emb f)

eq-htpy-decidable-emb :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f g : A ↪ᵈ B) 
  htpy-decidable-emb f g  f  g
eq-htpy-decidable-emb f g =
  map-inv-is-equiv (is-equiv-htpy-eq-decidable-emb f g)

Precomposing decidable embeddings with equivalences

equiv-precomp-decidable-emb-equiv :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A  B) 
  (C : UU l3)  (B ↪ᵈ C)  (A ↪ᵈ C)
equiv-precomp-decidable-emb-equiv e C =
  equiv-Σ
    ( is-decidable-emb)
    ( equiv-precomp e C)
    ( λ g 
      equiv-iff-is-prop
        ( is-prop-is-decidable-emb g)
        ( is-prop-is-decidable-emb (g  map-equiv e))
        ( λ H  is-decidable-emb-comp H (is-decidable-emb-is-equiv (pr2 e)))
        ( λ d 
          is-decidable-emb-htpy
            ( λ b  ap g (inv (is-section-map-inv-equiv e b)))
            ( is-decidable-emb-comp
              ( d)
              ( is-decidable-emb-is-equiv (is-equiv-map-inv-equiv e)))))

Any map out of the empty type is a decidable embedding

abstract
  is-decidable-emb-ex-falso :
    {l : Level} {X : UU l}  is-decidable-emb (ex-falso {l} {X})
  is-decidable-emb-ex-falso = (is-emb-ex-falso , is-decidable-map-ex-falso)

decidable-emb-ex-falso :
  {l : Level} {X : UU l}  empty ↪ᵈ X
decidable-emb-ex-falso = (ex-falso , is-decidable-emb-ex-falso)

decidable-emb-is-empty :
  {l1 l2 : Level} {A : UU l1} {B : UU l2}  is-empty A  A ↪ᵈ B
decidable-emb-is-empty {A = A} f =
  map-equiv
    ( equiv-precomp-decidable-emb-equiv (equiv-is-empty f id) _)
    ( decidable-emb-ex-falso)

The map on total spaces induced by a family of decidable embeddings is a decidable embedding

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {C : A  UU l3}
  where

  is-decidable-emb-tot :
    {f : (x : A)  B x  C x} 
    ((x : A)  is-decidable-emb (f x))  is-decidable-emb (tot f)
  is-decidable-emb-tot H =
    ( is-emb-tot  x  is-emb-is-decidable-emb (H x)) ,
      is-decidable-map-tot  x  is-decidable-map-is-decidable-emb (H x)))

  decidable-emb-tot : ((x : A)  B x ↪ᵈ C x)  Σ A B ↪ᵈ Σ A C
  decidable-emb-tot f =
    ( tot  x  map-decidable-emb (f x)) ,
      is-decidable-emb-tot  x  is-decidable-emb-map-decidable-emb (f x)))

The map on total spaces induced by a decidable embedding on the base is a decidable embedding

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B  UU l3)
  where

  is-decidable-emb-map-Σ-map-base :
    {f : A  B}  is-decidable-emb f  is-decidable-emb (map-Σ-map-base f C)
  is-decidable-emb-map-Σ-map-base {f} H =
    ( is-emb-map-Σ-map-base C (is-emb-is-decidable-emb H) ,
      is-decidable-map-Σ-map-base C (is-decidable-map-is-decidable-emb H))

  decidable-emb-map-Σ-map-base :
    (f : A ↪ᵈ B)  Σ A (C  map-decidable-emb f) ↪ᵈ Σ B C
  decidable-emb-map-Σ-map-base f =
    ( map-Σ-map-base (map-decidable-emb f) C ,
      is-decidable-emb-map-Σ-map-base ((is-decidable-emb-map-decidable-emb f)))

The functoriality of dependent pair types preserves decidable embeddings

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A  UU l3} (D : B  UU l4)
  where

  is-decidable-emb-map-Σ :
    {f : A  B} {g : (x : A)  C x  D (f x)} 
    is-decidable-emb f 
    ((x : A)  is-decidable-emb (g x)) 
    is-decidable-emb (map-Σ D f g)
  is-decidable-emb-map-Σ {f} {g} F G =
    is-decidable-emb-left-map-triangle
      ( triangle-map-Σ D f g)
      ( is-decidable-emb-tot G)
      ( is-decidable-emb-map-Σ-map-base D F)

  decidable-emb-Σ :
    (f : A ↪ᵈ B) 
    ((x : A)  C x ↪ᵈ D (map-decidable-emb f x)) 
    Σ A C ↪ᵈ Σ B D
  decidable-emb-Σ f g =
    ( ( map-Σ D (map-decidable-emb f)  x  map-decidable-emb (g x))) ,
      ( is-decidable-emb-map-Σ
        ( is-decidable-emb-map-decidable-emb f)
        ( λ x  is-decidable-emb-map-decidable-emb (g x))))

Products of decidable embeddings are decidable embeddings

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  where

  is-decidable-emb-map-product :
    {f : A  B} {g : C  D} 
    is-decidable-emb f  is-decidable-emb g  is-decidable-emb (map-product f g)
  is-decidable-emb-map-product (eF , dF) (eG , dG) =
    ( is-emb-map-product eF eG , is-decidable-map-product dF dG)

  decidable-emb-product :
    A ↪ᵈ B  C ↪ᵈ D  A × C ↪ᵈ B × D
  decidable-emb-product (f , F) (g , G) =
    (map-product f g , is-decidable-emb-map-product F G)

Coproducts of decidable embeddings are decidable embeddings

module _
  {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'}
  where

abstract
  is-decidable-emb-map-coproduct :
    {l1 l2 l3 l4 : Level}
    {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
    {f : A  B} {g : X  Y} 
    is-decidable-emb f 
    is-decidable-emb g 
    is-decidable-emb (map-coproduct f g)
  is-decidable-emb-map-coproduct {f = f} {g} (eF , dF) (eG , dG) =
    ( is-emb-map-coproduct eF eG , is-decidable-map-coproduct dF dG)

Decidable embeddings are closed under base change

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  {f : A  B} {g : C  D}
  where

  is-decidable-prop-map-base-change :
    cartesian-hom-arrow g f  is-decidable-prop-map f  is-decidable-prop-map g
  is-decidable-prop-map-base-change α F d =
    is-decidable-prop-equiv
      ( equiv-fibers-cartesian-hom-arrow g f α d)
      ( F (map-codomain-cartesian-hom-arrow g f α d))

  is-decidable-emb-base-change :
    cartesian-hom-arrow g f  is-decidable-emb f  is-decidable-emb g
  is-decidable-emb-base-change α F =
    is-decidable-emb-is-decidable-prop-map
      ( is-decidable-prop-map-base-change α
        ( is-decidable-prop-map-is-decidable-emb F))

Decidable embeddings are closed under retracts of maps

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  {f : A  B} {g : X  Y}
  where

  is-decidable-prop-map-retract-map :
    f retract-of-map g  is-decidable-prop-map g  is-decidable-prop-map f
  is-decidable-prop-map-retract-map R G x =
    is-decidable-prop-retract-of
      ( retract-fiber-retract-map f g R x)
      ( G (map-codomain-inclusion-retract-map f g R x))

  is-decidable-emb-retract-map :
    f retract-of-map g  is-decidable-emb g  is-decidable-emb f
  is-decidable-emb-retract-map R G =
    is-decidable-emb-is-decidable-prop-map
      ( is-decidable-prop-map-retract-map R
        ( is-decidable-prop-map-is-decidable-emb G))

A type is a decidable proposition if and only if its terminal map is a decidable embedding

module _
  {l : Level} {A : UU l}
  where

  is-decidable-prop-is-decidable-emb-terminal-map :
    is-decidable-emb (terminal-map A)  is-decidable-prop A
  is-decidable-prop-is-decidable-emb-terminal-map H =
    is-decidable-prop-equiv'
      ( equiv-fiber-terminal-map star)
      ( is-decidable-prop-map-is-decidable-emb H star)

  is-decidable-emb-terminal-map-is-decidable-prop :
    is-decidable-prop A  is-decidable-emb (terminal-map A)
  is-decidable-emb-terminal-map-is-decidable-prop H =
    is-decidable-emb-is-decidable-prop-map
      ( λ y  is-decidable-prop-equiv (equiv-fiber-terminal-map y) H)

If a dependent sum of propositions over a proposition is decidable, then the family is a family of decidable propositions

module _
  {l1 l2 : Level} (P : Prop l1) (Q : type-Prop P  Prop l2)
  where

  is-decidable-prop-family-is-decidable-Σ :
    is-decidable (Σ (type-Prop P) (type-Prop  Q)) 
    (p : type-Prop P)  is-decidable (type-Prop (Q p))
  is-decidable-prop-family-is-decidable-Σ H p =
    is-decidable-equiv'
      ( equiv-fiber-pr1 (type-Prop  Q) p)
      ( is-decidable-map-is-decidable-emb
        ( is-decidable-emb-right-factor'
          ( is-decidable-emb-terminal-map-is-decidable-prop
            ( is-prop-Σ (is-prop-type-Prop P) (is-prop-type-Prop  Q) , H))
          ( is-emb-terminal-map-is-prop (is-prop-type-Prop P)))
          ( p))

Recent changes