Divisibility in modular arithmetic
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Bryan Lu, Julian KG, fernabnor and louismntnu.
Created on 2022-03-14.
Last modified on 2023-09-06.
module elementary-number-theory.divisibility-modular-arithmetic where
Imports
open import elementary-number-theory.divisibility-integers open import elementary-number-theory.divisibility-standard-finite-types open import elementary-number-theory.modular-arithmetic open import elementary-number-theory.natural-numbers open import foundation.binary-relations open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import univalent-combinatorics.fibers-of-maps
Idea
For two numbers x
and y
in ℤ-Mod k
, we say that x
divides y
if there
is a number u
in ℤ-Mod k
such that mul-ℤ-Mod k u x = y
.
Definition
div-ℤ-Mod : (k : ℕ) → ℤ-Mod k → ℤ-Mod k → UU lzero div-ℤ-Mod k x y = Σ (ℤ-Mod k) (λ u → mul-ℤ-Mod k u x = y)
Properties
The divisibility relation is reflexive
refl-div-ℤ-Mod : {k : ℕ} (x : ℤ-Mod k) → div-ℤ-Mod k x x refl-div-ℤ-Mod {ℕ.zero-ℕ} = refl-div-ℤ refl-div-ℤ-Mod {ℕ.succ-ℕ k} = refl-div-Fin
The divisibility relation is transitive
transitive-div-ℤ-Mod : {k : ℕ} → is-transitive (div-ℤ-Mod k) transitive-div-ℤ-Mod {zero-ℕ} = transitive-div-ℤ transitive-div-ℤ-Mod {succ-ℕ k} = transitive-div-Fin (succ-ℕ k)
The divisibility relation is decidable
is-decidable-div-ℤ-Mod : (k : ℕ) (x y : ℤ-Mod k) → is-decidable (div-ℤ-Mod k x y) is-decidable-div-ℤ-Mod zero-ℕ x y = is-decidable-div-ℤ x y is-decidable-div-ℤ-Mod (succ-ℕ k) x y = is-decidable-fiber-Fin {succ-ℕ k} {succ-ℕ k} (mul-ℤ-Mod' (succ-ℕ k) x) y
Recent changes
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).