The multiplicative group of rational numbers
Content created by Louis Wasserman, Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2025-10-17.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplicative-group-of-rational-numbers where
Imports
open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonzero-rational-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.cores-monoids open import group-theory.groups open import group-theory.submonoids-commutative-monoids open import ring-theory.groups-of-units-rings open import ring-theory.invertible-elements-rings open import ring-theory.trivial-rings
Idea
The multiplicative group of rational numbers is the group of units of the ring of rational numbers, in other words, it is the core of the multiplicative monoid of rational numbers.
Definitions
The multiplicative group of rational numbers
group-of-units-ℚ : Group lzero group-of-units-ℚ = group-of-units-Ring ring-ℚ group-mul-ℚˣ : Group lzero group-mul-ℚˣ = group-of-units-Ring ring-ℚ
The type of invertible rational numbers
ℚˣ : UU lzero ℚˣ = type-group-of-units-Ring ring-ℚ one-ℚˣ : ℚˣ one-ℚˣ = unit-group-of-units-Ring ring-ℚ rational-ℚˣ : ℚˣ → ℚ rational-ℚˣ = pr1
Operations of the multiplicative group of rational numbers
mul-ℚˣ : ℚˣ → ℚˣ → ℚˣ mul-ℚˣ = mul-group-of-units-Ring ring-ℚ infixl 40 _*ℚˣ_ _*ℚˣ_ = mul-ℚˣ inv-ℚˣ : ℚˣ → ℚˣ inv-ℚˣ = inv-group-of-units-Ring ring-ℚ
Inverse laws in the multiplicative group of rational numbers
left-inverse-law-mul-ℚˣ : (x : ℚˣ) → (inv-ℚˣ x) *ℚˣ x = one-ℚˣ left-inverse-law-mul-ℚˣ = left-inverse-law-mul-group-of-units-Ring ring-ℚ right-inverse-law-mul-ℚˣ : (x : ℚˣ) → x *ℚˣ (inv-ℚˣ x) = one-ℚˣ right-inverse-law-mul-ℚˣ = right-inverse-law-mul-group-of-units-Ring ring-ℚ
Associativity law in the multiplicative group of rational numbers
associative-mul-ℚˣ : (x y z : ℚˣ) → ((x *ℚˣ y) *ℚˣ z) = (x *ℚˣ (y *ℚˣ z)) associative-mul-ℚˣ = associative-mul-Group group-mul-ℚˣ
Properties
The multiplicative group of rational numbers is commutative
commutative-mul-ℚˣ : (x y : ℚˣ) → (x *ℚˣ y) = (y *ℚˣ x) commutative-mul-ℚˣ = commutative-mul-Commutative-Submonoid ( commutative-monoid-mul-ℚ) ( submonoid-core-Monoid monoid-mul-ℚ) abelian-group-mul-ℚˣ : Ab lzero pr1 abelian-group-mul-ℚˣ = group-mul-ℚˣ pr2 abelian-group-mul-ℚˣ = commutative-mul-ℚˣ
The elements of the multiplicative group of the rational numbers are the nonzero rational numbers
module _ (x : ℚ) where is-nonzero-is-invertible-element-ring-ℚ : is-invertible-element-Ring ring-ℚ x → is-nonzero-ℚ x is-nonzero-is-invertible-element-ring-ℚ H K = is-nonzero-is-invertible-element-nontrivial-Ring ( ring-ℚ) ( is-nonzero-one-ℚ ∘ inv) ( x) ( H) ( inv K) opaque unfolding is-negative-ℚ is-invertible-element-ring-is-nonzero-ℚ : is-nonzero-ℚ x → is-invertible-element-Ring ring-ℚ x is-invertible-element-ring-is-nonzero-ℚ H = rec-coproduct ( ( is-invertible-element-neg-Ring' ring-ℚ x) ∘ ( is-mul-invertible-is-positive-ℚ (neg-ℚ x))) ( is-mul-invertible-is-positive-ℚ x) ( decide-is-negative-is-positive-is-nonzero-ℚ H) eq-is-invertible-element-prop-is-nonzero-prop-ℚ : is-nonzero-prop-ℚ = is-invertible-element-prop-Ring ring-ℚ eq-is-invertible-element-prop-is-nonzero-prop-ℚ = antisymmetric-leq-subtype ( is-nonzero-prop-ℚ) ( is-invertible-element-prop-Ring ring-ℚ) ( is-invertible-element-ring-is-nonzero-ℚ) ( is-nonzero-is-invertible-element-ring-ℚ) invertible-nonzero-ℚ : nonzero-ℚ → ℚˣ invertible-nonzero-ℚ (q , q≠0) = (q , is-invertible-element-ring-is-nonzero-ℚ q q≠0) invertible-ℚ⁺ : ℚ⁺ → ℚˣ invertible-ℚ⁺ = invertible-nonzero-ℚ ∘ nonzero-ℚ⁺ invertible-ℚ⁻ : ℚ⁻ → ℚˣ invertible-ℚ⁻ = invertible-nonzero-ℚ ∘ nonzero-ℚ⁻
Recent changes
- 2025-10-17. Louis Wasserman. Reorganize signed arithmetic on rational numbers (#1582).
- 2025-10-04. Louis Wasserman. Split out operations on positive rational numbers (#1562).
- 2025-10-02. Louis Wasserman. Intervals and interval arithmetic (#1497).
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).