Subterminal precategories

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-11-24.
Last modified on 2024-01-27.

module category-theory.subterminal-precategories where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.fully-faithful-functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories
open import category-theory.pregroupoids
open import category-theory.preunivalent-categories
open import category-theory.strict-categories
open import category-theory.terminal-category

open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.iterated-dependent-product-types
open import foundation.propositions
open import foundation.sets
open import foundation.subtype-identity-principle
open import foundation.unit-type
open import foundation.universe-levels

Idea

A precategory is subterminal if its terminal projection functor is fully faithful.

Definitions

The predicate on precategories of being subterminal

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  is-subterminal-Precategory : UU (l1  l2)
  is-subterminal-Precategory =
    is-fully-faithful-functor-Precategory C terminal-Precategory
      ( terminal-functor-Precategory C)

  is-subterminal-prop-Precategory : Prop (l1  l2)
  is-subterminal-prop-Precategory =
    is-fully-faithful-prop-functor-Precategory C terminal-Precategory
      ( terminal-functor-Precategory C)

  is-prop-is-subterminal-Precategory : is-prop is-subterminal-Precategory
  is-prop-is-subterminal-Precategory =
    is-prop-is-fully-faithful-functor-Precategory C terminal-Precategory
      ( terminal-functor-Precategory C)

Recent changes