Linear endomaps on left modules over commutative rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-endomaps-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.iterating-functions open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-endomaps-left-modules-rings open import linear-algebra.linear-maps-left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-rings
Idea
A
linear endomap¶
on a left module M over a
commutative ring is a
linear map from
M to itself.
Definition
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) where is-linear-endo-prop-left-module-Commutative-Ring : ( type-left-module-Commutative-Ring R M → type-left-module-Commutative-Ring R M) → Prop (l1 ⊔ l2) is-linear-endo-prop-left-module-Commutative-Ring = is-linear-map-prop-left-module-Commutative-Ring R M M is-linear-endo-left-module-Commutative-Ring : ( type-left-module-Commutative-Ring R M → type-left-module-Commutative-Ring R M) → UU (l1 ⊔ l2) is-linear-endo-left-module-Commutative-Ring f = type-Prop (is-linear-endo-prop-left-module-Commutative-Ring f) linear-endo-left-module-Commutative-Ring : UU (l1 ⊔ l2) linear-endo-left-module-Commutative-Ring = type-subtype is-linear-endo-prop-left-module-Commutative-Ring module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (f : linear-endo-left-module-Commutative-Ring R M) where map-linear-endo-left-module-Commutative-Ring : type-left-module-Commutative-Ring R M → type-left-module-Commutative-Ring R M map-linear-endo-left-module-Commutative-Ring = pr1 f is-linear-endo-map-linear-endo-left-module-Commutative-Ring : is-linear-endo-left-module-Commutative-Ring R M ( map-linear-endo-left-module-Commutative-Ring) is-linear-endo-map-linear-endo-left-module-Commutative-Ring = pr2 f
Properties
A linear endomap maps zero to zero
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (f : linear-endo-left-module-Commutative-Ring R M) where abstract is-zero-map-zero-linear-endo-left-module-Commutative-Ring : is-zero-left-module-Commutative-Ring R M ( map-linear-endo-left-module-Commutative-Ring R M f ( zero-left-module-Commutative-Ring R M)) is-zero-map-zero-linear-endo-left-module-Commutative-Ring = is-zero-map-zero-linear-map-left-module-Commutative-Ring R M M f
A linear endomap maps -v to the negation of the map of v
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (f : linear-endo-left-module-Commutative-Ring R M) where abstract map-neg-linear-endo-left-module-Commutative-Ring : (v : type-left-module-Commutative-Ring R M) → map-linear-endo-left-module-Commutative-Ring R M f ( neg-left-module-Commutative-Ring R M v) = neg-left-module-Commutative-Ring R M ( map-linear-endo-left-module-Commutative-Ring R M f v) map-neg-linear-endo-left-module-Commutative-Ring = map-neg-linear-map-left-module-Commutative-Ring R M M f
The identity map is a linear endomap
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) where is-linear-map-id-left-module-Commutative-Ring : is-linear-endo-left-module-Commutative-Ring R M id is-linear-map-id-left-module-Commutative-Ring = is-linear-map-id-left-module-Ring (ring-Commutative-Ring R) M id-linear-endo-left-module-Commutative-Ring : linear-endo-left-module-Commutative-Ring R M id-linear-endo-left-module-Commutative-Ring = id-linear-endo-left-module-Ring (ring-Commutative-Ring R) M
Composition of linear endomaps
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (g : type-left-module-Commutative-Ring R M → type-left-module-Commutative-Ring R M) (f : type-left-module-Commutative-Ring R M → type-left-module-Commutative-Ring R M) where abstract is-linear-endo-comp-left-module-Commutative-Ring : is-linear-endo-left-module-Commutative-Ring R M g → is-linear-endo-left-module-Commutative-Ring R M f → is-linear-endo-left-module-Commutative-Ring R M (g ∘ f) is-linear-endo-comp-left-module-Commutative-Ring = is-linear-map-comp-left-module-Commutative-Ring R M M M g f module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (g : linear-endo-left-module-Commutative-Ring R M) (f : linear-endo-left-module-Commutative-Ring R M) where comp-linear-endo-left-module-Commutative-Ring : linear-endo-left-module-Commutative-Ring R M comp-linear-endo-left-module-Commutative-Ring = comp-linear-map-left-module-Commutative-Ring R M M M g f
Iterating linear endomaps
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) where abstract is-linear-endo-iterate-map-left-module-Commutative-Ring : (n : ℕ) (f : linear-endo-left-module-Commutative-Ring R M) → is-linear-endo-left-module-Commutative-Ring R M ( iterate n (map-linear-endo-left-module-Commutative-Ring R M f)) is-linear-endo-iterate-map-left-module-Commutative-Ring = is-linear-endo-iterate-map-linear-endo-left-module-Ring ( ring-Commutative-Ring R) ( M) iterate-linear-endo-left-module-Commutative-Ring : ℕ → linear-endo-left-module-Commutative-Ring R M → linear-endo-left-module-Commutative-Ring R M iterate-linear-endo-left-module-Commutative-Ring = iterate-linear-endo-left-module-Ring (ring-Commutative-Ring R) M
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).