Symmetric bilinear forms in real vector spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module linear-algebra.symmetric-bilinear-forms-real-vector-spaces where
Imports
open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import linear-algebra.bilinear-forms-real-vector-spaces open import linear-algebra.real-vector-spaces open import real-numbers.dedekind-real-numbers
Idea
A bilinear form B on a
real vector space V is
symmetric¶
if B u v = B v u for all u and v in V.
Definition
Symmetry of a bilinear form
module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (B : bilinear-form-ℝ-Vector-Space V) where is-symmetric-prop-bilinear-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-symmetric-prop-bilinear-form-ℝ-Vector-Space = Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → Id-Prop ( ℝ-Set l1) ( map-bilinear-form-ℝ-Vector-Space V B x y) ( map-bilinear-form-ℝ-Vector-Space V B y x))) is-symmetric-bilinear-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-symmetric-bilinear-form-ℝ-Vector-Space = type-Prop is-symmetric-prop-bilinear-form-ℝ-Vector-Space
External links
- Symmetric bilinear form at Wikidata
- Symmetric bilinear form on Wikipedia
Recent changes
- 2025-11-26. Louis Wasserman. Inner product spaces (#1705).