Commuting squares of morphisms in set-magmoids
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2024-04-25.
module category-theory.commuting-squares-of-morphisms-in-set-magmoids where
Imports
open import category-theory.set-magmoids open import foundation.identity-types open import foundation.universe-levels
Idea
A square of morphisms
x ------> y
| |
| |
∨ ∨
z ------> w
in a set-magmoid C
is said to commute
if there is an identification between both
composites:
bottom ∘ left = right ∘ top.
Definitions
coherence-square-hom-Set-Magmoid : {l1 l2 : Level} (C : Set-Magmoid l1 l2) {x y z w : obj-Set-Magmoid C} (top : hom-Set-Magmoid C x y) (left : hom-Set-Magmoid C x z) (right : hom-Set-Magmoid C y w) (bottom : hom-Set-Magmoid C z w) → UU l2 coherence-square-hom-Set-Magmoid C top left right bottom = ( comp-hom-Set-Magmoid C bottom left) = ( comp-hom-Set-Magmoid C right top)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-01. Fredrik Bakke. Fun with functors (#886).