The homotopy preorder of types
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-04-11.
Last modified on 2024-04-11.
module foundation.homotopy-preorder-of-types where
Imports
open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.mere-functions open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.large-preorders open import order-theory.posets open import order-theory.preorders
Idea
The homotopy preorder of types¶ is the (large) preorder whose objects are types, and whose ordering relation is defined by mere functions, i.e. by the propositional truncation of the function types:
A ≤ B := ║(A → B)║₋₁.
Definitions
The large homotopy preorder of types
Homotopy-Type-Large-Preorder : Large-Preorder lsuc (_⊔_) Homotopy-Type-Large-Preorder = λ where .type-Large-Preorder l → UU l .leq-prop-Large-Preorder → prop-mere-function .refl-leq-Large-Preorder → refl-mere-function .transitive-leq-Large-Preorder X Y Z → transitive-mere-function
The small homotopy preorder of types
Homotopy-Type-Preorder : (l : Level) → Preorder (lsuc l) l Homotopy-Type-Preorder = preorder-Large-Preorder Homotopy-Type-Large-Preorder
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).