Morphisms of wild monoids
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2024-03-23.
module structured-types.morphisms-wild-monoids where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.homomorphisms-semigroups open import structured-types.morphisms-h-spaces open import structured-types.pointed-maps open import structured-types.wild-monoids
Idea
Morphisms between two wild monoids are maps that preserve the unit and multiplication. We only require the unit and multiplication to be preserved. This is because we would need further coherence in wild monoids if we want morphisms list to preserve the unital associator.
Definition
Homomorphisms of wild monoids
module _ {l1 l2 : Level} (M : Wild-Monoid l1) (N : Wild-Monoid l2) where hom-Wild-Monoid : UU (l1 ⊔ l2) hom-Wild-Monoid = hom-H-Space ( h-space-Wild-Monoid M) ( h-space-Wild-Monoid N) pointed-map-hom-Wild-Monoid : hom-Wild-Monoid → pointed-type-Wild-Monoid M →∗ pointed-type-Wild-Monoid N pointed-map-hom-Wild-Monoid f = pr1 f map-hom-Wild-Monoid : hom-Wild-Monoid → type-Wild-Monoid M → type-Wild-Monoid N map-hom-Wild-Monoid f = pr1 (pr1 f) preserves-unit-map-hom-Wild-Monoid : (f : hom-Wild-Monoid) → (map-hom-Wild-Monoid f (unit-Wild-Monoid M)) = (unit-Wild-Monoid N) preserves-unit-map-hom-Wild-Monoid f = pr2 (pr1 f) preserves-unital-mul-map-hom-Wild-Monoid : (f : hom-Wild-Monoid) → preserves-unital-mul-pointed-map-H-Space ( h-space-Wild-Monoid M) ( h-space-Wild-Monoid N) ( pointed-map-hom-Wild-Monoid f) preserves-unital-mul-map-hom-Wild-Monoid f = pr2 f preserves-mul-hom-Wild-Monoid : (f : hom-Wild-Monoid) → preserves-mul ( mul-Wild-Monoid M) ( mul-Wild-Monoid N) ( map-hom-Wild-Monoid f) preserves-mul-hom-Wild-Monoid f = pr1 (pr2 f) preserves-left-unit-law-mul-map-hom-Wild-Monoid : ( f : hom-Wild-Monoid) → preserves-left-unit-law-mul-pointed-map-H-Space ( h-space-Wild-Monoid M) ( h-space-Wild-Monoid N) ( pointed-map-hom-Wild-Monoid f) ( preserves-mul-hom-Wild-Monoid f) preserves-left-unit-law-mul-map-hom-Wild-Monoid f = pr1 (pr2 (pr2 f)) preserves-right-unit-law-mul-map-hom-Wild-Monoid : (f : hom-Wild-Monoid) → preserves-right-unit-law-mul-pointed-map-H-Space ( h-space-Wild-Monoid M) ( h-space-Wild-Monoid N) ( pointed-map-hom-Wild-Monoid f) ( preserves-mul-hom-Wild-Monoid f) preserves-right-unit-law-mul-map-hom-Wild-Monoid f = pr1 (pr2 (pr2 (pr2 f))) preserves-coh-unit-laws-map-hom-Wild-Monoid : (f : hom-Wild-Monoid) → preserves-coherence-unit-laws-mul-pointed-map-H-Space ( h-space-Wild-Monoid M) ( h-space-Wild-Monoid N) ( pointed-map-hom-Wild-Monoid f) ( preserves-mul-hom-Wild-Monoid f) ( preserves-left-unit-law-mul-map-hom-Wild-Monoid f) ( preserves-right-unit-law-mul-map-hom-Wild-Monoid f) preserves-coh-unit-laws-map-hom-Wild-Monoid f = pr2 (pr2 (pr2 (pr2 f)))
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).