The action on Cauchy sequences of short maps between metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
module metric-spaces.action-on-cauchy-sequences-short-maps-metric-spaces where
Imports
open import foundation.universe-levels open import metric-spaces.action-on-cauchy-sequences-uniformly-continuous-maps-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-maps-metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces
Idea
The composition of a short map between metric spaces and a Cauchy sequence is a Cauchy sequence.
Proof
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-map-Metric-Space A B) (u : cauchy-sequence-Metric-Space A) where map-cauchy-sequence-short-map-Metric-Space : cauchy-sequence-Metric-Space B map-cauchy-sequence-short-map-Metric-Space = map-cauchy-sequence-uniformly-continuous-map-Metric-Space ( A) ( B) ( uniformly-continuous-map-short-map-Metric-Space A B f) ( u)
See also
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).