The category of groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-03-17.
Last modified on 2025-01-06.
module group-theory.category-of-groups where
Imports
open import category-theory.categories open import category-theory.large-categories open import foundation.1-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups open import group-theory.isomorphisms-groups open import group-theory.precategory-of-groups
Definitions
is-large-category-Group : is-large-category-Large-Precategory Group-Large-Precategory is-large-category-Group G = fundamental-theorem-id (is-torsorial-iso-Group G) (iso-eq-Group G) eq-iso-Group : {l : Level} (G H : Group l) → iso-Group G H → Id G H eq-iso-Group G H = map-inv-is-equiv (is-large-category-Group G H) Group-Large-Category : Large-Category lsuc (_⊔_) large-precategory-Large-Category Group-Large-Category = Group-Large-Precategory is-large-category-Large-Category Group-Large-Category = is-large-category-Group Group-Category : (l : Level) → Category (lsuc l) l Group-Category = category-Large-Category Group-Large-Category
Corollaries
The type of groups is a 1-type
is-1-type-Group : {l : Level} → is-1-type (Group l) is-1-type-Group {l} = is-1-type-obj-Category (Group-Category l)
Recent changes
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).