Base change of dependent reflexive globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.base-change-dependent-reflexive-globular-types where
Imports
open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import globular-types.base-change-dependent-globular-types open import globular-types.dependent-globular-types open import globular-types.dependent-reflexive-globular-types open import globular-types.globular-types open import globular-types.reflexive-globular-maps open import globular-types.reflexive-globular-types
Idea
Consider a reflexive globular map
f : G → H
between
reflexive globular types G
and
H
, and consider a
dependent reflexive globular type
K
over H
. The
base change¶
f*K
is the dependent reflexive globular type over G
given by
(f*K)₀ x := K₀ (f₀ x)
(f*K)' e := K' (f₁ e)
where the reflexivity structure of f*K
is defined separately.
Definitions
Base change of dependent reflexive globular types
dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Reflexive-Globular-Type l1 l2} {H : Reflexive-Globular-Type l3 l4} (f : reflexive-globular-map G H) → Dependent-Reflexive-Globular-Type l5 l6 H → Dependent-Globular-Type l5 l6 (globular-type-Reflexive-Globular-Type G) dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K = base-change-Dependent-Globular-Type ( globular-map-reflexive-globular-map f) ( dependent-globular-type-Dependent-Reflexive-Globular-Type K) 0-cell-base-change-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Reflexive-Globular-Type l1 l2} {H : Reflexive-Globular-Type l3 l4} (f : reflexive-globular-map G H) → Dependent-Reflexive-Globular-Type l5 l6 H → 0-cell-Reflexive-Globular-Type G → UU l5 0-cell-base-change-Dependent-Reflexive-Globular-Type f K = 0-cell-Dependent-Globular-Type ( dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K) 1-cell-dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Reflexive-Globular-Type l1 l2} {H : Reflexive-Globular-Type l3 l4} (f : reflexive-globular-map G H) → (K : Dependent-Reflexive-Globular-Type l5 l6 H) → {x y : 0-cell-Reflexive-Globular-Type G} → 0-cell-base-change-Dependent-Reflexive-Globular-Type f K x → 0-cell-base-change-Dependent-Reflexive-Globular-Type f K y → Dependent-Globular-Type l6 l6 ( 1-cell-globular-type-Reflexive-Globular-Type G x y) 1-cell-dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K = 1-cell-dependent-globular-type-Dependent-Globular-Type ( dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K) is-reflexive-base-change-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Reflexive-Globular-Type l1 l2} {H : Reflexive-Globular-Type l3 l4} (f : reflexive-globular-map G H) → (K : Dependent-Reflexive-Globular-Type l5 l6 H) → is-reflexive-Dependent-Globular-Type G ( dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K) refl-1-cell-is-reflexive-Dependent-Globular-Type ( is-reflexive-base-change-Dependent-Reflexive-Globular-Type f K) y = tr ( 1-cell-Dependent-Reflexive-Globular-Type K y y) ( inv ( preserves-refl-1-cell-reflexive-globular-map f _)) ( refl-1-cell-Dependent-Reflexive-Globular-Type K y) is-reflexive-1-cell-dependent-globular-type-Dependent-Globular-Type ( is-reflexive-base-change-Dependent-Reflexive-Globular-Type f K) ( y) ( y') = is-reflexive-base-change-Dependent-Reflexive-Globular-Type ( 1-cell-reflexive-globular-map-reflexive-globular-map f) ( 1-cell-dependent-reflexive-globular-type-Dependent-Reflexive-Globular-Type K y y') base-change-Dependent-Reflexive-Globular-Type : {l1 l2 l3 l4 l5 l6 : Level} {G : Reflexive-Globular-Type l1 l2} {H : Reflexive-Globular-Type l3 l4} (f : reflexive-globular-map G H) → Dependent-Reflexive-Globular-Type l5 l6 H → Dependent-Reflexive-Globular-Type l5 l6 G dependent-globular-type-Dependent-Reflexive-Globular-Type ( base-change-Dependent-Reflexive-Globular-Type f K) = dependent-globular-type-base-change-Dependent-Reflexive-Globular-Type f K refl-Dependent-Reflexive-Globular-Type ( base-change-Dependent-Reflexive-Globular-Type f K) = is-reflexive-base-change-Dependent-Reflexive-Globular-Type f K
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).