Surjective group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-08-21.
Last modified on 2023-11-24.
module group-theory.surjective-group-homomorphisms where
Imports
open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels open import group-theory.full-subgroups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.images-of-group-homomorphisms open import group-theory.surjective-semigroup-homomorphisms
A group homomorphism f : G → H
is said
to be surjective if its underlying map is
surjective.
Definition
Surjective group homomorphisms
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where is-surjective-prop-hom-Group : Prop (l1 ⊔ l2) is-surjective-prop-hom-Group = is-surjective-prop-hom-Semigroup ( semigroup-Group G) ( semigroup-Group H) ( f) is-surjective-hom-Group : UU (l1 ⊔ l2) is-surjective-hom-Group = is-surjective-hom-Semigroup ( semigroup-Group G) ( semigroup-Group H) ( f) is-prop-is-surjective-hom-Group : is-prop is-surjective-hom-Group is-prop-is-surjective-hom-Group = is-prop-is-surjective-hom-Semigroup ( semigroup-Group G) ( semigroup-Group H) ( f)
Properties
A group homomorphism is surjective if and only if its image is the full subgroup
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where is-surjective-is-full-subgroup-image-hom-Group : is-full-Subgroup H (image-hom-Group G H f) → is-surjective-hom-Group G H f is-surjective-is-full-subgroup-image-hom-Group u = u is-full-subgroup-image-is-surjective-hom-Group : is-surjective-hom-Group G H f → is-full-Subgroup H (image-hom-Group G H f) is-full-subgroup-image-is-surjective-hom-Group u = u
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).