Multiplication by positive, negative, and nonnegative real numbers
Content created by Louis Wasserman.
Created on 2025-11-08.
Last modified on 2025-11-08.
module real-numbers.multiplication-positive-and-negative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
When we have information about the sign of the factors of a product of real numbers, we can deduce the sign of their product too.
Lemmas
The product of a positive and a negative rational number is negative
abstract is-negative-mul-positive-negative-ℝ : {l1 l2 : Level} {x : ℝ l1} {y : ℝ l2} → is-positive-ℝ x → is-negative-ℝ y → is-negative-ℝ (x *ℝ y) is-negative-mul-positive-negative-ℝ {x = x} {y = y} is-pos-x is-neg-y = preserves-le-right-sim-ℝ ( x *ℝ y) ( x *ℝ zero-ℝ) ( zero-ℝ) ( right-zero-law-mul-ℝ x) ( preserves-le-left-mul-ℝ⁺ (x , is-pos-x) y zero-ℝ is-neg-y) mul-positive-negative-ℝ : {l1 l2 : Level} → ℝ⁺ l1 → ℝ⁻ l2 → ℝ⁻ (l1 ⊔ l2) mul-positive-negative-ℝ (x , is-pos-x) (y , is-neg-y) = ( x *ℝ y , is-negative-mul-positive-negative-ℝ is-pos-x is-neg-y)
Recent changes
- 2025-11-08. Louis Wasserman. Powers of real numbers (#1673).