Subtype duality

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2023-04-27.
Last modified on 2023-09-06.

module foundation.subtype-duality where
Imports
open import foundation.dependent-pair-types
open import foundation.inhabited-types
open import foundation.propositional-maps
open import foundation.structured-type-duality
open import foundation.surjective-maps
open import foundation.universe-levels

open import foundation-core.embeddings
open import foundation-core.equivalences
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.propositions

Theorem

Subtype duality

Slice-emb : (l : Level) {l1 : Level} (A : UU l1)  UU (lsuc l  l1)
Slice-emb l A = Σ (UU l)  X  X  A)

equiv-Fiber-Prop :
  (l : Level) {l1 : Level} (A : UU l1) 
  Slice-emb (l1  l) A  (A  Prop (l1  l))
equiv-Fiber-Prop l A =
  ( equiv-Fiber-structure l is-prop A) ∘e
  ( equiv-tot  X  equiv-tot equiv-is-prop-map-is-emb))

Slice-surjection : (l : Level) {l1 : Level} (A : UU l1)  UU (lsuc l  l1)
Slice-surjection l A = Σ (UU l)  X  X  A)

equiv-Fiber-trunc-Prop :
  (l : Level) {l1 : Level} (A : UU l1) 
  Slice-surjection (l1  l) A  (A  Inhabited-Type (l1  l))
equiv-Fiber-trunc-Prop l A =
  ( equiv-Fiber-structure l is-inhabited A)

Recent changes