Subtype duality
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2023-04-27.
Last modified on 2023-09-06.
module foundation.subtype-duality where
Imports
open import foundation.dependent-pair-types open import foundation.inhabited-types open import foundation.propositional-maps open import foundation.structured-type-duality open import foundation.surjective-maps open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import foundation-core.propositions
Theorem
Subtype duality
Slice-emb : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) Slice-emb l A = Σ (UU l) (λ X → X ↪ A) equiv-Fiber-Prop : (l : Level) {l1 : Level} (A : UU l1) → Slice-emb (l1 ⊔ l) A ≃ (A → Prop (l1 ⊔ l)) equiv-Fiber-Prop l A = ( equiv-Fiber-structure l is-prop A) ∘e ( equiv-tot (λ X → equiv-tot equiv-is-prop-map-is-emb)) Slice-surjection : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) Slice-surjection l A = Σ (UU l) (λ X → X ↠ A) equiv-Fiber-trunc-Prop : (l : Level) {l1 : Level} (A : UU l1) → Slice-surjection (l1 ⊔ l) A ≃ (A → Inhabited-Type (l1 ⊔ l)) equiv-Fiber-trunc-Prop l A = ( equiv-Fiber-structure l is-inhabited A)
Recent changes
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-05-22. Fredrik Bakke, Victor Blanchi, Egbert Rijke and Jonathan Prieto-Cubides. Pre-commit stuff (#627).
- 2023-04-27. Egbert Rijke. Cleaning up some stuff in species (#575).