Sharp codiscrete types

Content created by Fredrik Bakke.

Created on 2023-11-24.
Last modified on 2024-09-06.

{-# OPTIONS --cohesion --flat-split #-}

module modal-type-theory.sharp-codiscrete-types where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.transport-along-equivalences
open import foundation.universe-levels

open import modal-type-theory.sharp-modality

open import orthogonal-factorization-systems.higher-modalities
open import orthogonal-factorization-systems.modal-operators

Idea

A type is said to be sharp codiscrete if it is sharp modal, i.e. if the sharp unit is an equivalence at that type.

We postulate that codiscrete types are closed under

  • the formation of identity types
  • the formation of dependent function types
  • the formation of the subuniverse of codiscrete types.

Please note that there is some redundancy between the axioms that are assumed here and in the files on the flat-sharp adjunction, and the file on the sharp modality, and they may be subject to change in the future.

Definitions

Sharp codiscrete types

module _
  {l : Level} (A : UU l)
  where

  is-sharp-codiscrete : UU l
  is-sharp-codiscrete = is-modal unit-sharp A

  is-sharp-codiscrete-Prop : Prop l
  is-sharp-codiscrete-Prop = is-modal-Prop unit-sharp A

  is-property-is-sharp-codiscrete : is-prop is-sharp-codiscrete
  is-property-is-sharp-codiscrete = is-property-is-modal unit-sharp A

Sharp codiscrete families

is-sharp-codiscrete-family :
  {l1 l2 : Level} {A : UU l1} (B : A  UU l2)  UU (l1  l2)
is-sharp-codiscrete-family {A = A} B = (x : A)  is-sharp-codiscrete (B x)

module _
  {l1 l2 : Level} {A : UU l1} (B : A  UU l2)
  where

  is-sharp-codiscrete-family-Prop : Prop (l1  l2)
  is-sharp-codiscrete-family-Prop = Π-Prop A (is-sharp-codiscrete-Prop  B)

  is-property-is-sharp-codiscrete-family :
    is-prop (is-sharp-codiscrete-family B)
  is-property-is-sharp-codiscrete-family =
    is-prop-type-Prop is-sharp-codiscrete-family-Prop

The subuniverse of sharp codiscrete types

Sharp-Codiscrete-Type : (l : Level)  UU (lsuc l)
Sharp-Codiscrete-Type l = Σ (UU l) (is-sharp-codiscrete)

module _
  {l : Level} (A : Sharp-Codiscrete-Type l)
  where

  type-Sharp-Codiscrete-Type : UU l
  type-Sharp-Codiscrete-Type = pr1 A

  is-sharp-codiscrete-type-Sharp-Codiscrete-Type :
    is-sharp-codiscrete type-Sharp-Codiscrete-Type
  is-sharp-codiscrete-type-Sharp-Codiscrete-Type = pr2 A

Crisp induction for sharp codiscrete types

The following is Theorem 3.3 in [Shu18].

crisp-ind-sharp-codiscrete :
  {@l1 : Level} {l2 : Level} {@A : UU l1} (C : A  UU l2) 
  ((x : A)  is-sharp-codiscrete (C x)) 
  ((@x : A)  C x)  (x : A)  C x
crisp-ind-sharp-codiscrete C is-codisc-C f x =
  map-inv-is-equiv (is-codisc-C x) (crisp-ind-sharp C f x)

compute-crisp-ind-sharp-codiscrete :
  {@l1 : Level} {l2 : Level} {@A : UU l1} (C : A  UU l2)
  (is-codisc-C : (x : A)  is-sharp-codiscrete (C x))
  (f : (@x : A)  C x) 
  (@x : A)  crisp-ind-sharp-codiscrete C is-codisc-C f x  f x
compute-crisp-ind-sharp-codiscrete C is-codisc-C f x =
  ( ap (map-inv-is-equiv (is-codisc-C x)) (compute-crisp-ind-sharp C f x)) 
  ( is-retraction-map-inv-is-equiv (is-codisc-C x) (f x))

Postulates

The identity types of ♯ A are sharp codiscrete

postulate
  is-sharp-codiscrete-Id-sharp :
    {l1 : Level} {A : UU l1} (x y :  A)  is-sharp-codiscrete (x  y)

is-sharp-codiscrete-Id :
  {l1 : Level} {A : UU l1} (x y : A) 
  is-sharp-codiscrete A  is-sharp-codiscrete (x  y)
is-sharp-codiscrete-Id x y is-sharp-A =
  map-tr-equiv
    ( is-sharp-codiscrete)
    ( inv-equiv-ap-is-emb (is-emb-is-equiv is-sharp-A))
    ( is-sharp-codiscrete-Id-sharp (unit-sharp x) (unit-sharp y))

A dependent function type is codiscrete if its codomain is

postulate
  is-sharp-codiscrete-Π :
    {l1 l2 : Level} {A : UU l1} {B : A  UU l2} 
    ((x : A)  is-sharp-codiscrete (B x)) 
    is-sharp-codiscrete ((x : A)  B x)

is-sharp-codiscrete-function-type :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} 
  is-sharp-codiscrete B 
  is-sharp-codiscrete (A  B)
is-sharp-codiscrete-function-type is-sharp-B =
  is-sharp-codiscrete-Π  _  is-sharp-B)

The universe of codiscrete types is codiscrete

postulate
  is-sharp-codiscrete-Sharp-Codiscrete-Type :
    (l : Level)  is-sharp-codiscrete (Sharp-Codiscrete-Type l)

The sharp higher modality

module _
  (l : Level)
  where

  is-higher-modality-sharp :
    is-higher-modality (sharp-locally-small-operator-modality l) (unit-sharp)
  pr1 is-higher-modality-sharp = induction-principle-sharp
  pr2 is-higher-modality-sharp X = is-sharp-codiscrete-Id-sharp

  sharp-higher-modality : higher-modality l l
  pr1 sharp-higher-modality = sharp-locally-small-operator-modality l
  pr1 (pr2 sharp-higher-modality) = unit-sharp
  pr2 (pr2 sharp-higher-modality) = is-higher-modality-sharp

Iterated crisp induction for sharp codiscrete types

module _
  {@l1 l2 : Level} {l3 : Level}
  {@A : UU l1} {@B : A  UU l2} (C : (x : A)  B x  UU l3)
  (is-codisc-C : (x : A) (y : B x)  is-sharp-codiscrete (C x y))
  (f : (@x : A) (@y : B x)  C x y)
  where

  crisp-binary-ind-sharp-codiscrete : (x : A) (y : B x)  C x y
  crisp-binary-ind-sharp-codiscrete =
    crisp-ind-sharp-codiscrete
      ( λ x  (y : B x)  C x y)
      ( λ x  is-sharp-codiscrete-Π (is-codisc-C x))
      ( λ x  crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x))

  compute-crisp-binary-ind-sharp-codiscrete :
    (@x : A) (@y : B x)  crisp-binary-ind-sharp-codiscrete x y  f x y
  compute-crisp-binary-ind-sharp-codiscrete x y =
    ( htpy-eq
      ( compute-crisp-ind-sharp-codiscrete
        ( λ x  (y : B x)  C x y)
        ( λ x  is-sharp-codiscrete-Π (is-codisc-C x))
        ( λ x  crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x))
        ( x))
      ( y)) 
    ( compute-crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x) y)

module _
  {@l1 l2 l3 : Level} {l4 : Level}
  {@A : UU l1} {@B : A  UU l2} {@C : (x : A)  B x  UU l3}
  (D : (x : A) (y : B x)  C x y  UU l4)
  (is-codisc-D : (x : A) (y : B x) (z : C x y)  is-sharp-codiscrete (D x y z))
  (f : (@x : A) (@y : B x) (@z : C x y)  D x y z)
  where

  crisp-ternary-ind-sharp-codiscrete : (x : A) (y : B x) (z : C x y)  D x y z
  crisp-ternary-ind-sharp-codiscrete =
    crisp-ind-sharp-codiscrete
      ( λ x  (y : B x) (z : C x y)  D x y z)
      ( λ x 
        is-sharp-codiscrete-Π  y  is-sharp-codiscrete-Π (is-codisc-D x y)))
      ( λ x  crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x))

  compute-crisp-ternary-ind-sharp-codiscrete :
    (@x : A) (@y : B x) (@z : C x y) 
    crisp-ternary-ind-sharp-codiscrete x y z  f x y z
  compute-crisp-ternary-ind-sharp-codiscrete x y z =
    ( htpy-eq
      ( htpy-eq
        ( compute-crisp-ind-sharp-codiscrete
          ( λ x  (y : B x) (z : C x y)  D x y z)
          ( λ x 
            is-sharp-codiscrete-Π
              ( λ y  is-sharp-codiscrete-Π (is-codisc-D x y)))
          ( λ x  crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x))
          ( x))
        ( y))
      ( z)) 
    ( compute-crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x) y z)

Properties

Types in the image of the sharp modality are codiscrete

is-sharp-codiscrete-sharp : {l : Level} (X : UU l)  is-sharp-codiscrete ( X)
is-sharp-codiscrete-sharp {l} =
  is-modal-operator-type-higher-modality (sharp-higher-modality l)

See also

References

[Shu18]
Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.

Recent changes