Sharp codiscrete types
Content created by Fredrik Bakke.
Created on 2023-11-24.
Last modified on 2024-09-06.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.sharp-codiscrete-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-equivalences open import foundation.universe-levels open import modal-type-theory.sharp-modality open import orthogonal-factorization-systems.higher-modalities open import orthogonal-factorization-systems.modal-operators
Idea
A type is said to be sharp codiscrete¶ if it is sharp modal, i.e. if the sharp unit is an equivalence at that type.
We postulate that codiscrete types are closed under
- the formation of identity types
- the formation of dependent function types
- the formation of the subuniverse of codiscrete types.
Please note that there is some redundancy between the axioms that are assumed here and in the files on the flat-sharp adjunction, and the file on the sharp modality, and they may be subject to change in the future.
Definitions
Sharp codiscrete types
module _ {l : Level} (A : UU l) where is-sharp-codiscrete : UU l is-sharp-codiscrete = is-modal unit-sharp A is-sharp-codiscrete-Prop : Prop l is-sharp-codiscrete-Prop = is-modal-Prop unit-sharp A is-property-is-sharp-codiscrete : is-prop is-sharp-codiscrete is-property-is-sharp-codiscrete = is-property-is-modal unit-sharp A
Sharp codiscrete families
is-sharp-codiscrete-family : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → UU (l1 ⊔ l2) is-sharp-codiscrete-family {A = A} B = (x : A) → is-sharp-codiscrete (B x) module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where is-sharp-codiscrete-family-Prop : Prop (l1 ⊔ l2) is-sharp-codiscrete-family-Prop = Π-Prop A (is-sharp-codiscrete-Prop ∘ B) is-property-is-sharp-codiscrete-family : is-prop (is-sharp-codiscrete-family B) is-property-is-sharp-codiscrete-family = is-prop-type-Prop is-sharp-codiscrete-family-Prop
The subuniverse of sharp codiscrete types
Sharp-Codiscrete-Type : (l : Level) → UU (lsuc l) Sharp-Codiscrete-Type l = Σ (UU l) (is-sharp-codiscrete) module _ {l : Level} (A : Sharp-Codiscrete-Type l) where type-Sharp-Codiscrete-Type : UU l type-Sharp-Codiscrete-Type = pr1 A is-sharp-codiscrete-type-Sharp-Codiscrete-Type : is-sharp-codiscrete type-Sharp-Codiscrete-Type is-sharp-codiscrete-type-Sharp-Codiscrete-Type = pr2 A
Crisp induction for sharp codiscrete types
The following is Theorem 3.3 in [Shu18].
crisp-ind-sharp-codiscrete : {@♭ l1 : Level} {l2 : Level} {@♭ A : UU l1} (C : A → UU l2) → ((x : A) → is-sharp-codiscrete (C x)) → ((@♭ x : A) → C x) → (x : A) → C x crisp-ind-sharp-codiscrete C is-codisc-C f x = map-inv-is-equiv (is-codisc-C x) (crisp-ind-sharp C f x) compute-crisp-ind-sharp-codiscrete : {@♭ l1 : Level} {l2 : Level} {@♭ A : UU l1} (C : A → UU l2) (is-codisc-C : (x : A) → is-sharp-codiscrete (C x)) (f : (@♭ x : A) → C x) → (@♭ x : A) → crisp-ind-sharp-codiscrete C is-codisc-C f x = f x compute-crisp-ind-sharp-codiscrete C is-codisc-C f x = ( ap (map-inv-is-equiv (is-codisc-C x)) (compute-crisp-ind-sharp C f x)) ∙ ( is-retraction-map-inv-is-equiv (is-codisc-C x) (f x))
Postulates
The identity types of ♯ A
are sharp codiscrete
postulate is-sharp-codiscrete-Id-sharp : {l1 : Level} {A : UU l1} (x y : ♯ A) → is-sharp-codiscrete (x = y) is-sharp-codiscrete-Id : {l1 : Level} {A : UU l1} (x y : A) → is-sharp-codiscrete A → is-sharp-codiscrete (x = y) is-sharp-codiscrete-Id x y is-sharp-A = map-tr-equiv ( is-sharp-codiscrete) ( inv-equiv-ap-is-emb (is-emb-is-equiv is-sharp-A)) ( is-sharp-codiscrete-Id-sharp (unit-sharp x) (unit-sharp y))
A dependent function type is codiscrete if its codomain is
postulate is-sharp-codiscrete-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-sharp-codiscrete (B x)) → is-sharp-codiscrete ((x : A) → B x) is-sharp-codiscrete-function-type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-sharp-codiscrete B → is-sharp-codiscrete (A → B) is-sharp-codiscrete-function-type is-sharp-B = is-sharp-codiscrete-Π (λ _ → is-sharp-B)
The universe of codiscrete types is codiscrete
postulate is-sharp-codiscrete-Sharp-Codiscrete-Type : (l : Level) → is-sharp-codiscrete (Sharp-Codiscrete-Type l)
The sharp higher modality
module _ (l : Level) where is-higher-modality-sharp : is-higher-modality (sharp-locally-small-operator-modality l) (unit-sharp) pr1 is-higher-modality-sharp = induction-principle-sharp pr2 is-higher-modality-sharp X = is-sharp-codiscrete-Id-sharp sharp-higher-modality : higher-modality l l pr1 sharp-higher-modality = sharp-locally-small-operator-modality l pr1 (pr2 sharp-higher-modality) = unit-sharp pr2 (pr2 sharp-higher-modality) = is-higher-modality-sharp
Iterated crisp induction for sharp codiscrete types
module _ {@♭ l1 l2 : Level} {l3 : Level} {@♭ A : UU l1} {@♭ B : A → UU l2} (C : (x : A) → B x → UU l3) (is-codisc-C : (x : A) (y : B x) → is-sharp-codiscrete (C x y)) (f : (@♭ x : A) (@♭ y : B x) → C x y) where crisp-binary-ind-sharp-codiscrete : (x : A) (y : B x) → C x y crisp-binary-ind-sharp-codiscrete = crisp-ind-sharp-codiscrete ( λ x → (y : B x) → C x y) ( λ x → is-sharp-codiscrete-Π (is-codisc-C x)) ( λ x → crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x)) compute-crisp-binary-ind-sharp-codiscrete : (@♭ x : A) (@♭ y : B x) → crisp-binary-ind-sharp-codiscrete x y = f x y compute-crisp-binary-ind-sharp-codiscrete x y = ( htpy-eq ( compute-crisp-ind-sharp-codiscrete ( λ x → (y : B x) → C x y) ( λ x → is-sharp-codiscrete-Π (is-codisc-C x)) ( λ x → crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x)) ( x)) ( y)) ∙ ( compute-crisp-ind-sharp-codiscrete (C x) (is-codisc-C x) (f x) y) module _ {@♭ l1 l2 l3 : Level} {l4 : Level} {@♭ A : UU l1} {@♭ B : A → UU l2} {@♭ C : (x : A) → B x → UU l3} (D : (x : A) (y : B x) → C x y → UU l4) (is-codisc-D : (x : A) (y : B x) (z : C x y) → is-sharp-codiscrete (D x y z)) (f : (@♭ x : A) (@♭ y : B x) (@♭ z : C x y) → D x y z) where crisp-ternary-ind-sharp-codiscrete : (x : A) (y : B x) (z : C x y) → D x y z crisp-ternary-ind-sharp-codiscrete = crisp-ind-sharp-codiscrete ( λ x → (y : B x) (z : C x y) → D x y z) ( λ x → is-sharp-codiscrete-Π (λ y → is-sharp-codiscrete-Π (is-codisc-D x y))) ( λ x → crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x)) compute-crisp-ternary-ind-sharp-codiscrete : (@♭ x : A) (@♭ y : B x) (@♭ z : C x y) → crisp-ternary-ind-sharp-codiscrete x y z = f x y z compute-crisp-ternary-ind-sharp-codiscrete x y z = ( htpy-eq ( htpy-eq ( compute-crisp-ind-sharp-codiscrete ( λ x → (y : B x) (z : C x y) → D x y z) ( λ x → is-sharp-codiscrete-Π ( λ y → is-sharp-codiscrete-Π (is-codisc-D x y))) ( λ x → crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x)) ( x)) ( y)) ( z)) ∙ ( compute-crisp-binary-ind-sharp-codiscrete (D x) (is-codisc-D x) (f x) y z)
Properties
Types in the image of the sharp modality are codiscrete
is-sharp-codiscrete-sharp : {l : Level} (X : UU l) → is-sharp-codiscrete (♯ X) is-sharp-codiscrete-sharp {l} = is-modal-operator-type-higher-modality (sharp-higher-modality l)
See also
- Flat discrete crisp types for a partial dual notion.
References
- [Shu18]
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.
Recent changes
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).