Functoriality of reflective global subuniverses

Content created by Fredrik Bakke.

Created on 2025-02-03.
Last modified on 2025-02-03.

module orthogonal-factorization-systems.functoriality-reflective-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.commuting-squares-of-maps
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.extensions-types-global-subuniverses
open import foundation.extensions-types-subuniverses
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.global-subuniverses
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-functions
open import foundation.propositions
open import foundation.retractions
open import foundation.retracts-of-maps
open import foundation.retracts-of-types
open import foundation.subuniverses
open import foundation.unit-type
open import foundation.universe-levels

open import orthogonal-factorization-systems.functoriality-localizations-at-global-subuniverses
open import orthogonal-factorization-systems.localizations-at-global-subuniverses
open import orthogonal-factorization-systems.modal-induction
open import orthogonal-factorization-systems.modal-operators
open import orthogonal-factorization-systems.modal-subuniverse-induction
open import orthogonal-factorization-systems.reflective-global-subuniverses
open import orthogonal-factorization-systems.types-local-at-maps
open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses

Idea

Given a reflective global subuniverse 𝒫 then for every map f : X → Y there is a map Lf : LX → LY such that the square

        f
  X --------> Y
  |           |
  |           |
  ∨    Lf     ∨
  LX ------> LY

commutes. This construction preserves identity functions and composition of maps

  L(g ∘ f) ~ Lg ∘ Lf    and    L(id) ~ id

Definitions

The functorial action on maps of reflective global subuniverses

module _
  {α β : Level  Level} (𝒫 : reflective-global-subuniverse α β)
  {l1 l2 : Level} {X : UU l1} {Y : UU l2}
  where

  map-reflective-global-subuniverse :
    (X  Y) 
    type-reflection-reflective-global-subuniverse 𝒫 X 
    type-reflection-reflective-global-subuniverse 𝒫 Y
  map-reflective-global-subuniverse =
    map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)

  eq-naturality-map-reflective-global-subuniverse :
    (f : X  Y) 
    map-reflective-global-subuniverse f 
    unit-reflective-global-subuniverse 𝒫 X 
    unit-reflective-global-subuniverse 𝒫 Y 
    f
  eq-naturality-map-reflective-global-subuniverse =
    eq-naturality-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)

  naturality-map-reflective-global-subuniverse :
    (f : X  Y) 
    coherence-square-maps
      ( f)
      ( unit-reflective-global-subuniverse 𝒫 X)
      ( unit-reflective-global-subuniverse 𝒫 Y)
      ( map-reflective-global-subuniverse f)
  naturality-map-reflective-global-subuniverse =
    naturality-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)

The functorial action on maps of reflective global subuniverses preserves homotopies

module _
  {α β : Level  Level} (𝒫 : reflective-global-subuniverse α β)
  {l1 l2 : Level} {X : UU l1} {Y : UU l2}
  where

  preserves-htpy-map-reflective-global-subuniverse :
    {f g : X  Y}  f ~ g 
    map-reflective-global-subuniverse 𝒫 f ~
    map-reflective-global-subuniverse 𝒫 g
  preserves-htpy-map-reflective-global-subuniverse =
    preserves-htpy-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)

Properties

The functorial action on maps of types with localizations preserves identity functions

module _
  {α β : Level  Level} (𝒫 : reflective-global-subuniverse α β)
  {l1 : Level} {X : UU l1}
  where

  eq-preserves-id-map-reflective-global-subuniverse :
    map-reflective-global-subuniverse 𝒫 (id' X)  id
  eq-preserves-id-map-reflective-global-subuniverse =
    eq-preserves-id-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)

  preserves-id-map-reflective-global-subuniverse :
    map-reflective-global-subuniverse 𝒫 (id' X) ~ id
  preserves-id-map-reflective-global-subuniverse =
    preserves-id-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)

The functorial action on maps of types with localizations preserves composition

module _
  {α β : Level  Level} (𝒫 : reflective-global-subuniverse α β)
  {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3}
  (g : Y  Z) (f : X  Y)
  where

  eq-preserves-comp-map-reflective-global-subuniverse :
    map-reflective-global-subuniverse 𝒫 (g  f) 
    map-reflective-global-subuniverse 𝒫 g 
    map-reflective-global-subuniverse 𝒫 f
  eq-preserves-comp-map-reflective-global-subuniverse =
    eq-preserves-comp-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( is-reflective-reflective-global-subuniverse 𝒫 Z)
      ( g)
      ( f)

  preserves-comp-map-reflective-global-subuniverse :
    map-reflective-global-subuniverse 𝒫 (g  f) ~
    map-reflective-global-subuniverse 𝒫 g 
    map-reflective-global-subuniverse 𝒫 f
  preserves-comp-map-reflective-global-subuniverse =
    preserves-comp-map-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( is-reflective-reflective-global-subuniverse 𝒫 Z)
      ( g)
      ( f)

Reflective global subuniverses are closed under retracts

This is Corollary 5.1.10 in [Rij19].

Proof. Let 𝒫 be a reflective global subuniverse and Y ∈ 𝒫. Moreover, let X be a retract of Y. then applying the functoriality of the reflective subuniverse we have a retract of maps

        i           r
  X --------> Y --------> X
  |           |           |
  |           |           |
  ∨    Li     ∨    Lr     ∨
  LX -------> LY ------> LX

since the middle vertical map is an equivalence, so is the outer vertical map.

module _
  {α β : Level  Level} (𝒫 : reflective-global-subuniverse α β)
  {l1 l2 : Level} {X : UU l1} {Y : UU l2}
  (R : X retract-of Y)
  where

  inclusion-retract-reflective-global-subuniverse :
    type-reflection-reflective-global-subuniverse 𝒫 X 
    type-reflection-reflective-global-subuniverse 𝒫 Y
  inclusion-retract-reflective-global-subuniverse =
    map-reflective-global-subuniverse 𝒫 (inclusion-retract R)

  map-retraction-retract-reflective-global-subuniverse :
    type-reflection-reflective-global-subuniverse 𝒫 Y 
    type-reflection-reflective-global-subuniverse 𝒫 X
  map-retraction-retract-reflective-global-subuniverse =
    map-reflective-global-subuniverse 𝒫 (map-retraction-retract R)

  is-retraction-map-retraction-retract-reflective-global-subuniverse :
    is-retraction
      ( inclusion-retract-reflective-global-subuniverse)
      ( map-retraction-retract-reflective-global-subuniverse)
  is-retraction-map-retraction-retract-reflective-global-subuniverse =
    is-retraction-map-retraction-retract-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( R)

  retraction-retract-reflective-global-subuniverse :
    retraction
      ( inclusion-retract-reflective-global-subuniverse)
  retraction-retract-reflective-global-subuniverse =
    retraction-retract-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( R)

  retract-reflective-global-subuniverse :
    ( type-reflection-reflective-global-subuniverse 𝒫 X) retract-of
    ( type-reflection-reflective-global-subuniverse 𝒫 Y)
  retract-reflective-global-subuniverse =
    retract-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( R)

  is-in-reflective-global-subuniverse-retract :
    is-in-reflective-global-subuniverse 𝒫 Y 
    is-in-reflective-global-subuniverse 𝒫 X
  is-in-reflective-global-subuniverse-retract =
    is-in-global-subuniverse-retract-localization-global-subuniverse
      ( global-subuniverse-reflective-global-subuniverse 𝒫)
      ( is-reflective-reflective-global-subuniverse 𝒫 X)
      ( is-reflective-reflective-global-subuniverse 𝒫 Y)
      ( R)

References

[CORS20]
J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
[Rij19]
Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.

Recent changes