Functoriality of reflective global subuniverses
Content created by Fredrik Bakke.
Created on 2025-02-03.
Last modified on 2025-02-03.
module orthogonal-factorization-systems.functoriality-reflective-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.extensions-types-global-subuniverses open import foundation.extensions-types-subuniverses open import foundation.function-extensionality open import foundation.function-types open import foundation.global-subuniverses open import foundation.homotopies open import foundation.identity-types open import foundation.precomposition-functions open import foundation.propositions open import foundation.retractions open import foundation.retracts-of-maps open import foundation.retracts-of-types open import foundation.subuniverses open import foundation.unit-type open import foundation.universe-levels open import orthogonal-factorization-systems.functoriality-localizations-at-global-subuniverses open import orthogonal-factorization-systems.localizations-at-global-subuniverses open import orthogonal-factorization-systems.modal-induction open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.modal-subuniverse-induction open import orthogonal-factorization-systems.reflective-global-subuniverses open import orthogonal-factorization-systems.types-local-at-maps open import orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses
Idea
Given a
reflective global subuniverse
𝒫
then for every map f : X → Y
there is a map Lf : LX → LY
such that the
square
f
X --------> Y
| |
| |
∨ Lf ∨
LX ------> LY
commutes. This construction preserves identity functions and composition of maps
L(g ∘ f) ~ Lg ∘ Lf and L(id) ~ id
Definitions
The functorial action on maps of reflective global subuniverses
module _ {α β : Level → Level} (𝒫 : reflective-global-subuniverse α β) {l1 l2 : Level} {X : UU l1} {Y : UU l2} where map-reflective-global-subuniverse : (X → Y) → type-reflection-reflective-global-subuniverse 𝒫 X → type-reflection-reflective-global-subuniverse 𝒫 Y map-reflective-global-subuniverse = map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) eq-naturality-map-reflective-global-subuniverse : (f : X → Y) → map-reflective-global-subuniverse f ∘ unit-reflective-global-subuniverse 𝒫 X = unit-reflective-global-subuniverse 𝒫 Y ∘ f eq-naturality-map-reflective-global-subuniverse = eq-naturality-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) naturality-map-reflective-global-subuniverse : (f : X → Y) → coherence-square-maps ( f) ( unit-reflective-global-subuniverse 𝒫 X) ( unit-reflective-global-subuniverse 𝒫 Y) ( map-reflective-global-subuniverse f) naturality-map-reflective-global-subuniverse = naturality-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y)
The functorial action on maps of reflective global subuniverses preserves homotopies
module _ {α β : Level → Level} (𝒫 : reflective-global-subuniverse α β) {l1 l2 : Level} {X : UU l1} {Y : UU l2} where preserves-htpy-map-reflective-global-subuniverse : {f g : X → Y} → f ~ g → map-reflective-global-subuniverse 𝒫 f ~ map-reflective-global-subuniverse 𝒫 g preserves-htpy-map-reflective-global-subuniverse = preserves-htpy-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y)
Properties
The functorial action on maps of types with localizations preserves identity functions
module _ {α β : Level → Level} (𝒫 : reflective-global-subuniverse α β) {l1 : Level} {X : UU l1} where eq-preserves-id-map-reflective-global-subuniverse : map-reflective-global-subuniverse 𝒫 (id' X) = id eq-preserves-id-map-reflective-global-subuniverse = eq-preserves-id-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) preserves-id-map-reflective-global-subuniverse : map-reflective-global-subuniverse 𝒫 (id' X) ~ id preserves-id-map-reflective-global-subuniverse = preserves-id-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X)
The functorial action on maps of types with localizations preserves composition
module _ {α β : Level → Level} (𝒫 : reflective-global-subuniverse α β) {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} (g : Y → Z) (f : X → Y) where eq-preserves-comp-map-reflective-global-subuniverse : map-reflective-global-subuniverse 𝒫 (g ∘ f) = map-reflective-global-subuniverse 𝒫 g ∘ map-reflective-global-subuniverse 𝒫 f eq-preserves-comp-map-reflective-global-subuniverse = eq-preserves-comp-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( is-reflective-reflective-global-subuniverse 𝒫 Z) ( g) ( f) preserves-comp-map-reflective-global-subuniverse : map-reflective-global-subuniverse 𝒫 (g ∘ f) ~ map-reflective-global-subuniverse 𝒫 g ∘ map-reflective-global-subuniverse 𝒫 f preserves-comp-map-reflective-global-subuniverse = preserves-comp-map-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( is-reflective-reflective-global-subuniverse 𝒫 Z) ( g) ( f)
Reflective global subuniverses are closed under retracts
This is Corollary 5.1.10 in [Rij19].
Proof. Let 𝒫
be a reflective global subuniverse and Y ∈ 𝒫
. Moreover, let
X
be a retract of Y
. then applying the functoriality of the reflective
subuniverse we have a retract of maps
i r
X --------> Y --------> X
| | |
| | |
∨ Li ∨ Lr ∨
LX -------> LY ------> LX
since the middle vertical map is an equivalence, so is the outer vertical map.
module _ {α β : Level → Level} (𝒫 : reflective-global-subuniverse α β) {l1 l2 : Level} {X : UU l1} {Y : UU l2} (R : X retract-of Y) where inclusion-retract-reflective-global-subuniverse : type-reflection-reflective-global-subuniverse 𝒫 X → type-reflection-reflective-global-subuniverse 𝒫 Y inclusion-retract-reflective-global-subuniverse = map-reflective-global-subuniverse 𝒫 (inclusion-retract R) map-retraction-retract-reflective-global-subuniverse : type-reflection-reflective-global-subuniverse 𝒫 Y → type-reflection-reflective-global-subuniverse 𝒫 X map-retraction-retract-reflective-global-subuniverse = map-reflective-global-subuniverse 𝒫 (map-retraction-retract R) is-retraction-map-retraction-retract-reflective-global-subuniverse : is-retraction ( inclusion-retract-reflective-global-subuniverse) ( map-retraction-retract-reflective-global-subuniverse) is-retraction-map-retraction-retract-reflective-global-subuniverse = is-retraction-map-retraction-retract-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( R) retraction-retract-reflective-global-subuniverse : retraction ( inclusion-retract-reflective-global-subuniverse) retraction-retract-reflective-global-subuniverse = retraction-retract-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( R) retract-reflective-global-subuniverse : ( type-reflection-reflective-global-subuniverse 𝒫 X) retract-of ( type-reflection-reflective-global-subuniverse 𝒫 Y) retract-reflective-global-subuniverse = retract-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( R) is-in-reflective-global-subuniverse-retract : is-in-reflective-global-subuniverse 𝒫 Y → is-in-reflective-global-subuniverse 𝒫 X is-in-reflective-global-subuniverse-retract = is-in-global-subuniverse-retract-localization-global-subuniverse ( global-subuniverse-reflective-global-subuniverse 𝒫) ( is-reflective-reflective-global-subuniverse 𝒫 X) ( is-reflective-reflective-global-subuniverse 𝒫 Y) ( R)
References
- [CORS20]
- J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2025-02-03. Fredrik Bakke. Reflective global subuniverses (#1228).